
Orthogonal ring patterns,
discrete surfaces and integrable systems

Alexander Bobenko

Technische Universität Berlin

Integrability in Condensed Matter Physics and Quantum Field
Theory, Les Diablerets, Feb 3-12, 2023

based on joint works with
T. Hoffmann, T. Rörig, N. Smeenk, N. Schmitt, S. Heller

Alexander Bobenko Orthogonal Ring Patterns



Orthogonal circle patterns

▶ Circle patterns (with the
combinatorics of the
square grid) [Schramm ’97]

▶ Convergence to conformal
maps

▶ Circle patterns as discrete
complex analysis

▶ Discrete Riemann mapping
theorem [Thurston]

▶ Integrable equations
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Orthogonal circle patterns in a plane and discrete
Hirota equation

unknowns:

radii r

closure condition:

(integrable) Hirota equation

(r − ir1)(r − ir2)(r − ir3)(r − ir4)

(r + ir1)(r + ir2)(r + ir3)(r + ir4)
= 1
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Orthogonal ring patterns

Outline
▶ A generalization of

orthogonal circle patterns
(away from conformal limit)

▶ Orthogonal ring patterns in
a sphere and hyperbolic
space

▶ Relation to discrete
minimal and cmc surfaces

▶ Integrable discretizations
of ∆u ± sinhu = 0
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Orthogonally intersecting rings

▶ A ring is a pair of concentric circles, inner and outer circle
radii: r and R

▶ Combinatorics Z2, inner and outer circles cm,n and Cm,n

▶ Orthogonality of rings at neighboring vertices: the outer
circle Ci intersects the inner circle cj orthogonally

▶ cm,n, cm+1,n+1 and Cm+1,n,Cm,n+1 pass through one point
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Orthogonally intersecting rings

▶ R2
i + r2

j = R2
j + r2

i ⇒ R2
i − r2

i = R2
j − r2

j
▶ ρ-radii: Ri = cosh(ρi), ri = sinh(ρi)

▶ Orthogonal rings have the same area
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Two families of touching rings

The rings of an orthogonal ring pattern partition into two
diagonal families of touching rings.
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Equation for ρi

Theorem [B., Hoffmann, Rörig ’19]
Orthogonal ring patterns correspond to solutions of

2π =
∑

j:(ij)∈E

2 arctan(eρi−ρj ).

for ρ-radii.

▶ Equation for logarithmic radii ρ = logR of orthogonal circle
patterns

▶ One parameter family of orthogonal ring patterns Rδ with
radii r δi = sinh(ρi + δ),Rδ

i = cosh(ρi + δ)

▶ Equivalent to integrable Hirota equation
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Relation to orthogonal circle patterns

δ-family of a ring pattern.
For δ → +∞ one obtains an orthogonal circle pattern C with
logarithmic radii ρi ,
δ → −∞ gives the dual circle pattern C∗ with log radii −ρi .
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Doyle spirals deformation

ρm,n = mx − ny , x + iy ∈ C, Schramm [’97]
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za ring patterns

Ring patterns between z2 and log z circle patterns; ρm,n solves a discrete
Painlevé equation, B. [’99], Agafonov, B. [’00], B., Its [’16]
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Variational principle

[B., Hoffmann, Rörig ’19]

▶ Neumann boundary conditions: angles Φi on the boundary
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Orthogonal ring patterns in a sphere
and hyperbolic plane

[B., Hoffmann, Smeenk ’23]

▶ not related by a stereographic projection
▶ equations essentially different from the euclidean case
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Orthogonal ring patterns in a sphere
and hyperbolic plane

[B., Hoffmann, Smeenk ’23]

▶ Relation to integrable systems
▶ Relation to discrete (s-isothermic) cmc surfaces
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Spherical and hyperbolic orthogonal ring patterns

Concentric rings with spherical (hyperbolic) radii Ri , ri .
Spherical (hyperbolic) Pythagoras’ Theorem

spherical: cos(Rj) cos(rk ) = cos(rj) cos(Rk ),

hyperbolic: cosh(Rj) cosh(rk ) = cosh(rj) cosh(Rk )

implies for all rings, q < 1:

spherical: q cos(r) = cos(R),

hyperbolic: cosh(r) = q cosh(R).

▶ Parametrization in elliptic functions with modulus q ≤ 1.
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Spherical orthogonal ring patterns.
Parametrization in elliptic functions

Concentric rings with spherical radii Rj , rj .

q cos(r) = cos(R),

cos r = − sn(ρ,q), sin r = cn(ρ,q), sinR = dn(ρ,q).

▶ one to one correspondence (R, r) ⇔ ρ ∈ [−2K ,2K ]

Alexander Bobenko Orthogonal Ring Patterns



Equations

Theorem
ρ ∈ (−2K ,0] are radii of orthogonal spherical ring pattern with
R < π

2 if and only if they satisfy∑
k :(jk)∈E

g(ρj − ρk )− g(ρj + ρk ) = 2π,

where the sum is over the neighboring rings.

g(x) = arctan
(1 + q) sn x

2
cn x

2 dn x
2

.
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Variational description

Theorem
Orthogonal ring pattern with R < π

2 are critical points of the
functional

Ssph(ρ) :=
∑
(jk)

(
F (ρj − ρk )− F (ρj + ρk )

)
− 2π

∑
j

Φjρj ,

where the first sum is over all pairs of neighboring rings.

F (x) =
∫ x

0
arctan

(1 + q) sn u
2

cn u
2 dn u

2
du.
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Circle pattern limit

Orthogonal circle pattern q → 1, ρ → log tan R
2 .

q = 0.95 q = 0.98 q = 0.9999
Theorem (Away from conformal limit)
For any rigid orthogonal circle pattern and small ϵ there exists
an orthogonal ring pattern with q = 1 − ϵ.
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Hyperbolic orthogonal ring patterns.
Parametrization in elliptic functions

Concentric rings with hyperbolic radii Rj , rj .

cosh(r) = q cosh(R),

cosh r = − 1
q sn(ρ,q) , tanhR = dn(ρ,q), sinh r = cn(ρ,q)

sn(ρ,q) .

▶ one to one correspondence (R, r) ⇔ ρ ∈ [−2K ,0]
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Equations. Variational description

Theorem
ρ ∈ (−2K ,0] are radii of orthogonal hyperbolic ring pattern if
and only if they satisfy∑

k :(jk)∈E

g(ρj − ρk ) + g(ρj + ρk ) = −2π,

where the sum is over the neighboring rings. They are critical
points of the functional

Shyp(ρ) :=
∑
(jk)

(
F (ρj − ρk ) + F (ρj + ρk )

)
+ 2π

∑
j

ρj .
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Convexity

Theorem
The functional Shyp(ρ) is convex:

D2Shyp = 1
2
∑

(jk)(dn(ρj − ρk ) + q cn(ρj − ρk ))(dρj − dρk )
2 +

(dn(ρj + ρk ) + q cn(ρj + ρk ))(dρj + dρk )
2.
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Boundary valued problems

Theorem
For any choice of the boundary radii or angles (Dirichlet and
Neumann boundary conditions) there exists a unique
orthogonal hyperbolic ring pattern.
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Integrability as Consistency

▶ 2D Equation ▶ 3D Consistency

� �� ��� � �� ���

� �� ��� � �� ���

x xi

xj xij

Q(x , xi , xj , xij) = 0
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Classification of 2D integrable equations

Theorem [Adler,B.,Suris ’09]
Up to Möbius transformations (PSL2(C))8, any 3D-consistent
system with multi-affine Q’s (and with nondegenerate
biquadratics) is one of the following list (α = α(i), β = α(j),
sn(α) = sn(α; k)):

α(x − xj)(xi − xij)− β(x − xi)(xj − xij) = δαβ(β − α) (Q1)

α(x − xj)(xi − xij)− β(x − xi)(xj − xij)

+αβ(α− β)(x + xi + xj + xij)

= αβ(α− β)(α2 − αβ + β2)

(Q2)
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Classification of 2D integrable equations

Theorem [Adler,B.,Suris ’09]
Up to Möbius transformations (PSL2(C))8, any 3D-consistent
system with multi-affine Q’s (and with nondegenerate
biquadratics) is one of the following list (α = α(i), β = α(j),
sn(α) = sn(α; k)):

(
α− 1

β

)
(xxi + xjxij)−

(
β − 1

α

)
(xxj + xixij)

−
(α
β
− β

α

)
(xxij + xixj) =

δ

4

(
α− 1

α

)(
β − 1

β

)(α
β
− β

α

)
,

(Q3)

sn(α) sn(β) sn(α− β)(k2xxixjxij + 1) + sn(α)(xxi + xjxij)

− sn(β)(xxj + xixij)− sn(α− β)(xxij + xixj) = 0.
(Q4)
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Q4 integrable equation

sn(α) sn(β) sn(α− β)(k2xxixjxij + 1) + sn(α)(xxi + xjxij)

− sn(β)(xxj + xixij)− sn(α− β)(xxij + xixj) = 0.

▶ Master 2D integrable equation. All others as appropriate
limits

▶ Parametrization in elliptic functions
▶ Geometric interpretation - long standing problem
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Spherical and hyperbolic orthogonal ring pattern
equation as a (Laplace equation for) Q4 equation

▶ Equation for the ρ-radii of the spherical and hyperbolic
orthogonal ring patterns is a special case of the Q4
integrable equation on the square grid.

sn 1
2(ρ+ ρ1 + iK ′)

sn 1
2(ρ− ρ1 + iK ′)

sn 1
2(ρ+ ρ2 + iK ′)

sn 1
2(ρ− ρ2 + iK ′)

×

sn 1
2(ρ+ ρ3 + iK ′)

sn 1
2(ρ− ρ3 + iK ′)

sn 1
2(ρ+ ρ4 + iK ′)

sn 1
2(ρ− ρ4 + iK ′)

= 1.
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Koebe polyhedra and orthogonal circle patterns

Minimal surface case

▶ Orthogonal circle pattern↔ Koebe polyheder with its dual
▶ Circumscribed polyhedron with touching edges (and

quadrilateral faces)
[Koebe, Andreev, Thurston,...]
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Construction method for discrete minimal surfaces

continuous minimal surface
⇓

image of curvature lines under Gauss-map
⇓

cell decomposition of (a branched cover of) the sphere
⇓

Koebe polyhedron (variational principle)
⇓

discrete minimal surface (Christoffel dual)

▶ Geometry from combinatorics of curvature lines

[B., Hoffmann, Springborn, Annals ’06]
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Koebe polyhedra and minimal surfaces

Bobenko, Newjoto, Techter, Koebe polyhedra and minimal
surfaces, Movie, 2018
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Smooth cmc surfaces from loop group factorization

Which surfaces ?

▶ cmc
∆u + eu − |Q(z)|2e−u = 0,
sinh-Gordon equation on a
Riemann surface, Q(z)
holo quadratic differential

▶ N-noids → punctured
spheres

▶ periodic reflection surfaces
→ fundamental polygons

▶ DPW-method based on
Iwasawa loop group
factorization

▶ works numerically, proof of
existence problematic

[B., Heller, Schmitt ’21]
Changing mean curvature, movie
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Discrete (s-isothermic) cmc surfaces

q = 0.98291015625, most of the rings are negatively oriented

[B., Hoffmann, Smeenk ’23]
Spherical ring pattern ⇒ Gauss map ⇒ discrete cmc surface
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s-isothermic surfaces

▶ s-isothermic
[B., Pinkall ’99], [B., Suris ’07],
[Hoffmann]

▶ minimal
[B., Springborn, Hoffmann ’06]

▶ cmc
[Hoffmann ’10], [B., Hoffmann
’16], [Tellier, Hauswirth, Douthe,
Baverel ’18 ]
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Discrete cmc surfaces

cmc minimal cmc

[B., Hoffmann, Smeenk ’23]

Alexander Bobenko Orthogonal Ring Patterns



Gauss maps. Orthogonal ring (circle) patterns

minimal cmc

[B., Hoffmann, Smeenk ’23]
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Convergence
C∞ convergence known for minimal surfaces (circle patterns)
[B., Hoffmann, Springborn ’06]
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Discrete minimal surfaces in space forms. Outline

minimal S3

▶ isometric to cmc in R3

▶ ∆u + sinh u = 0
▶ Lawson correspondence
▶ Discrete Lawson

correspondence? Known
for slightly different class
[B., Romon ’17]

Smooth minimal compact
surface in S3

[B., Heller, Schmitt ’21]
Spherical orthogonal ring patterns described by integrable Q4
equation with a variational principle
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Discrete minimal surfaces in space forms. Outline

minimal AdS3

▶ isometric to cmc in R2,1

▶ ∆u − sinhu = 0
▶ Lawson correspondence?
▶ Discrete Lawson

correspondence?

Smooth minimal trinoid in AdS3

[B., Heller, Schmitt ’21]
Hyperbolic orthogonal ring patterns described by integrable Q4
equation with convex variational principle
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Integrable discretization
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Integrable discretization
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