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Troubles with integrable nonlinear sigma models

In the study of many integrable (quantum) field theories one is fortunate to benefit from

Yang-Baxter algebra structures. Existence of a Lax pair
[
∂x+Lx(λ), ∂t+Lt(λ)

]
= 0,

⇒ T (λ) = Tr(M(λ)), M(λ) :=
←
P exp

(∫ 2π

0

dx Lx(x, λ)

)
, is conserved.

In many cases one finds that the Poisson-structure of the fields implies{
M(λ)⊗, M(µ)

}
=
[
M(λ)⊗M(µ) , r(λ/µ)

]
. (clYBE).

Quantisation of such Poisson-structures is well-understood, leading to quantum groups

etc.. One may benefit from existence of a large set of advanced mathematical tools.

There is, however, an important class of field theories, the nonlinear sigma models,

where life is not that easy. Appearance of δ′-distributions in the Poisson-brackets of

Lx makes it hard, if not impossible, to get Poisson-brackets of the form (clYBE).

 non-ultralocality problem

This might indicate that completely new methods are necessary for this class.
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A case study: The Klimč́ık model

Gauged formulation:

Configurations: Fields (g1, g2) ∈ G×G modulo (g1, g2) 7→ (g1h, g2h).

A
4K

=

∫
dtdx

〈(
g−11 ∂+g1−g−12 ∂+g2

)
,
(
1−iε1R̂g1−iε2R̂g2

)−1(
g−11 ∂−g1−g−12 ∂−g2

)〉
,

where R̂(h) = 0, R̂(e±) = ∓i e±, h ∈ h, e± ∈ n±, and K, ε1, ε2: main parameters.

(ZCC)
[
∂x + Lx(z), ∂t + Lt(z)

]
= 0 ,

Lt(z) = L+(z) + L−(z) ,

Lx(z) = L+(z)− L−(z) ,
where

L±(z) = 1
4

(
ε
2
2 − ε

2
1 ± iε2 R̂g2

∓ iε1 R̂g1
+ ξ z

±1 ) I± + 1
2

(
g
−1
1 ∂±g1 + g

−1
2 ∂±g2

)
,

I± = 2
(
1± iε1 R̂g1

± iε2 R̂g2

)−1 (
g
−1
1 ∂±g1 − g−12 ∂±g2

)
,

ξ
2
=
(
1− (ε1 + ε2)

2 ) (
1− (ε1 − ε2)2

)
.

Reduced representation: g := g1g
−1
2 , L(inv)

µ (z) = g2Lµ(z) g−12 − (∂µg2) g
−1
2 ,

A = 4K

∫
dtdx

〈
g−1 ∂+g ,

(
1− iε1R̂g − iε2R̂

)−1 (
g−1∂−g

)〉
.
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A case study: The G = SU(2) Klimč́ık model – conformal limit

RG flow: ε1 =
1√

(1 + κ−1 ν2)(1 + κν2)
, ε2 =

ν2√
(1 + κ−1 ν2)(1 + κν2)

,

with running coupling κ (Fateev).

Target space near conformal limit κ→ 1−:
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More general: Classical Affine Gaudin Models1 (AGMs)

All field theory parameters encoded in function ϕ(z) of spectral parameter z

ϕ(z) =
K

ξ2

∏M
i=1(z − ζ

+
i )(z − ζ−i )∏M+1

r=1 (z − z+r )(z − z−r )

(
holomorphic on surface C0,2M+2

C0,2N := CP1 \ {z±1 , . . . , z
±
N}.

)

Kinematics: Poles z±r 7→ gC-Kac-Moody currents J±r (x) with levels `±r = Res
z=z±r

ϕ(z),{
Jρr (x)⊗, Jσs (y)

}
= δρσδrs

([(
1⊗ Jρr (x)

)
,C2

]
δ(x− y)− `ρr C2 ∂xδ(x− y)

)
.

Constraint generating G gauge symmetry:

C(x) =

M+1∑
r=1

J+
r (x) +

M+1∑
r=1

J−r (x) ≈ 0.

Dynamics generated by light-cone Hamiltonians P± ≈ ±
∑M
i=1 Res

z=ζ±i

Q(z) dz, where

Q(z) =
−1

2ϕ(z)

∫
dx
〈
Γ(z, x),Γ(z, x)

〉
, Γ(z, x) =

∑
ρ=±

M+1∑
r=1

Jρr (x)

z − zρr
.

1Following Feigin-Frenkel; Vicedo; Delduc-Lacroix-Magro-Vicedo; Lacroix, and specialising to a class of such models.
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Affine Gaudin models 2

Classical integrability: Zero curvature condition:[
∂+ + L+(z), ∂− + L−(z)

]
= 0 , (ZCC)

L±(z) = B± +

M∑
i=1

K±i
z − ζ±i

, K±i =
Γ(ζ±i )

ϕ′(ζ±i )
,

where z: spectral parameter.

Recovering the Klimč́ık model: Choosing M = 1, and

z±1 = +
1 + ε21 − ε22 ∓ 2ε1

ξ
, `±1 = ∓K

ε1
,

z±2 = −1 + ε22 − ε21 ∓ 2ε2
ξ

, `±2 = ∓K
ε2
.

reproduces the Klimč́ık model.
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Perturbatively quantised AGMs in the UV

Conjecture2: a) One-loop RG-flow ⇔ flow of function ϕ(z)

d

dτ
ϕ(z) = ~h∨

d

dz

(
f(z)ϕ(z)

)
+O(~2), with certain f = f [ϕ].

b) Limit κ→ 1− ⇒ z+i → 0, z−i →∞, RG fixed point.

 conformal/chiral limit: Defining L(L)
±
(
z(L)

)
= limξ→ 0 L±

(
z(L)

ξ

)
we get

L(L)
+

(
z(L)

)
≈ B(L)

+ +

M∑
i=1

K(L)
i

z(L) − ζ(L)i

, L(L)
−
(
z(L)

)
∼ 0 ,

up to gauge transformations. (ZCC) implies ∂−L(L)
+ = 0, chiral!

There is a second limit for the other chirality ⇒ Decoupling!

Let’s focus on the chiral theory defined by L(L)
+

(
z(L)

)
, and drop (L), + in notations.

2Part a) Delduc-Lacroix-Sfetsos-Siampos; b) Fateev for M = 1 (Klimč́ık model); numerical checks for low M .
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Our strategy: Entering quantum world through the side entrance

Usual approaches (canonical quantisation) start from the classical limit

~ ∼ 1/K ∼ α′ → 0. It may help to start from conformal limits instead.

Conformal limit: Chiral (VOA)

structure offers useful starting

point for quantisation of

such models (algebra of local

observables) and quantisation of

integrable structure.

Strategy: Understand integrable structure at conformal limit & deform away.

However:

Problems with non-ultralocality do not go away in the conformal limits!
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Quantising chiral AGMs

Quantize Kac-Moody-currents Jr(x) =
∑
a Jr,a(x)T a, with T a: basis for g:

[
Jr,a(x) , Js,b(y)

]
= −2π δrs (f cab Jr,c(x) δ(x− y) + i kr ηab ∂xδ(x− y)) ,

Quantised constraint Jdiag(x) :=
∑N
r=1 Jr(x)  Algebra of local observables:

coset VOA
ĝk1 ⊕ . . .⊕ ĝkM+1

ĝk1+...+kM+1

, kr = −2π`r +O(~)

~
.

Conjectured form of local charges3:

Qγ,p =

∮
γ

P(z)−p/h
∨

Vp(z) dz Vp(z) =

∫
Sp+1(z, x) dx ,

Sp+1(z, x) = τ
a1...ap+1
p :Γa1(z, x) · · ·Γap+1(z, x) : + . . . ,

P(z) =

N−1∏
r=1

(z − zr)kr, Γa(z, x) =
N∑
r=1

Jr,a(x)

z − zr
, γ Pochhammer contour,

with Sp+1 satisfying VOA conditions ensuring gauge invariance and [Qγ,p,Qγ′,q] = 0.
3Lacroix-Vicedo-Young
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Relation AGM to Klimč́ık model

Klimč́ık model has been studied extensively4 using the gauge-fixed formulation.

Central part of our work is a detailed comparison of gauged (AGM) and gauge-fixed

formulations of Klimč́ık model on classical and quantum level, including:

• Classical level:

Gauge fixing of AGM Lax matrix  Chiral limit of Klimč́ık Lax matrix

LUV(x, z) = −
(
χz V+ e+ + (1 + χz)V− e−

)
− χ

2
z V0 h , χ :=

4ν2

1 + ν2
,

V± =
(
i
√

1 + ν2 ∂+φ3 + ∂+φ2 ± ν ∂+φ1
)
e±2φ3, e+ =

(
0 1
0 0

)
,

V0 = −2
(
∂+φ3 − i

√
1 + ν2 ∂+φ2

)
, h =

(
1 0
0 −1

)
, e− =

(
0 0
1 0

)
.

Proof: Intricate computation of Dirac brackets.

• Quantum level: Comparison of quartic charge Qγ,4.

4Bazhanov-Lukyanov; Bazhanov-Kotousov-Lukyanov
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Application I – ODE/IQFT-conjectures for sigma models

Recall: Relativistic AGM  chiral AGMs in UV-limit. Thanks to Feigin and Frenkel:

UV limit of AGM: model for which there is ODE/IQFT-conjecture:

There is a one-to-one correspondence between the eigenstates of the quantum

affine Gaudin model associated to (ŝl2, ϕ), and differential operators

Dv = −∂2z + v(z) + χP(z),

where P(z) =
∏N
r=1(z− zr)kr, and the function v(z) has second order poles

at zr, r = 1, . . . , N , and singularities x1, . . . , xK with trivial monodromy.

(Such singularities are called apparent singularities. Triviality of monodromy

of ∇z around x1, . . . , xK, implies algebraic equations for x1, . . . , xK having

a discrete set of solutions.)

The corresponding eigenvalues of local IM Qγ,p are given in terms of v(z) as5

Iγ,p =

∮
γ

P(z)−p/h
∨
vp(z)dz , vp(z) : certain differential polynomial in v(z).

5Bazhanov-Lukyanov; generalisation: Lacroix-Vicedo-Young.
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Application II – Non-local IM in AGM 1

Non-ultralocality strikes back:

– So far no general proof of commutativity of quantum non-local IM in AGMs.

A conjecture of Bazhanov-Kotousov-Lukyanov (2018) suggests a solution: Let

X0 =
1

q − q−1

∫ 2π

0

dxV+(x) , X1 =
1

q − q−1

∫ 2π

0

dxV−(x) ,

V± = :
i
√
k3 + 2 ∂ϕ3 +

√
k2 + 2 ∂ϕ2 ±

√
k1 + 2 ∂ϕ1√

k2(k3 + 2)
e
± 2ϕ3√

k3+2 :, k3 = k1 + k2.

Fact: Polynomials formed out of X0, X1 can be renormalised such that

M(λ) := e
− π h√

k3+2
p(3) ←
P expren

(
λ

∫ 2π

0

dx
(

V+ q
h
2 e+ + V− q

−h
2 e−

))
can be defined as a formal power series in X0,X1, λ satisfying Yang-Baxter equation6

R(λ/µ)
(
M(λ)⊗ id

) (
id⊗M(µ)

)
=
(
id⊗M(µ)

) (
M(λ)⊗ id

)
R(λ/µ) (YBE).

6There exist a renormalisation such that X0, X1 satisfy Serre relations of Uq(ŝl2). Claim thereby follows from results of

Bazhanov-Lukyanov-Zamolodchikov, Bazhanov-Khoroshkin-Hibberd relating M(λ) to the universal R-matrix of Uq(ŝl2).
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Application II – Non-local IM in AGM 2

Conjecture: (Bazhanov-Kotousov-Lukyanov) M(λ) admits a classical limit ki →∞

M(λ) = e−πP3 h
←
P exp

(
−
∫ 2π

0

dx LUV

(
x, z(λ)

))
,

where z(λ) is a formal power series in λ, and LUV(x, z) is the classical Lax matrix of

the Klimcik model in the chiral limit.

The limit is subtle7 (renormalisation; spectral parameter z(λ) scheme dependent).

However, validity of this conjecture would establish that

M(λ): quantum counterpart of the classical monodromy matrix, satisfying YBE.

Unclear if the classical monodromy matrix satisfies an equally simple Poisson-algebra.

 Suggestion: Construction of non-local IM in q-AGMs can follow YBE-paradigm.

7Kotousov-Lacroix-T., work in progress
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Summary: Hidden structures in chiral AGMs

• AGM-formulation ( spin chain with affine Lie algebra symmetry) enables

– quantisation of algebra of local observables (VOA, W-algebra),

– construction of local conserved quantities.

Complex geometry of spectral parameter surface (affine Hitchin system)

helps understanding

– RG-flows,

– construction of local IM,

– spectra (affine opers).

• Relations to quantum affine algebras help understanding non-local IM.

One may hope that these structures admit

deformations away from the conformal limits.
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