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Troubles with integrable nonlinear sigma models

In the study of many integrable (quantum) field theories one is fortunate to benefit from
Yang-Baxter algebra structures. Existence of a Lax pair |9, + L (A), 8; + L(N)] =0,

— T\ = Te(M(\), M()) = Pexp ( /0 " e Lo(o, A)), s conserved.

In many cases one finds that the Poisson-structure of the fields implies
[MON) M)} = [MO) © M(u), r(\/p)] . (cIYBE).

Quantisation of such Poisson-structures is well-understood, leading to quantum groups
etc.. One may benefit from existence of a large set of advanced mathematical tools.

There is, however, an important class of field theories, the nonlinear sigma models,
where life is not that easy. Appearance of ¢’-distributions in the Poisson-brackets of
L, makes it hard, if not impossible, to get Poisson-brackets of the form (clYBE).

~»  non-ultralocality problem

This might indicate that completely new methods are necessary for this class.



A case study: The Klim¢ik model

Gauged formulation:

Configurations: Fields (g1, 92) € G x G modulo (g1, g2) — (g1h, g2h).

A N A _
o= [ dtdn (o 003" 0:g0). (1-ier By o) 07 0-01-95 0 g2) )

A

where R(h) =0, }A%(elu) — Fiet, he b, er € ny, and K, e1,e2: main parameters.

Li(z) = Ly(2) + L_(2),
ZCC Or + Lo(2), 0 + Li(2)] =0, where
(zco) | ) ) Lo(z) = Ly(z) = L(2),

Li(z) =1(e)— el tiea Ry, Fier Ry + 627 ) To + 1 (g7 0201 + g5 ' 0292)
Ij: = 2 (1 :Ei€1 Rgl :|:i€2 Rgz)_l (gl_lc’?igl - gglﬁigz) )
£ = (1—(€1+€2)2) (1—(61—62)2).

Reduced representation: g := g,g; ", [,,(jnv)(z) =g, Lu(2) g5 " — (0,,92) g5 ",

A= 4K/dtdx <g_1 0.g, (1 — islfzg — 152}?)_1 (g_la_g)> :



A case study: The G = SU(2) Klimé&ik model — conformal limit

1 V2
RG flow: &1 = : o = ;
V(I + 57102 (1 + kv?) V(I + 57102 (1 + kv?)

with running coupling « (Fateev).

Target space near conformal limit kK — 17;
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More general: Classical Affine Gaudin Models! (AGMs)

All field theory parameters encoded in function (z) of spectral parameter 2

o(z) = K Hi‘il(z _ g:r)(z — () < holomorphic on surface Cy apr42 )
E I 2= 25 (2 — 20) Coan = CP'\ {zF,..., 25}
Kinematics: Poles zF — g“-Kac-Moody currents J*(z) with levels ¢/ = Resigp(z),

{29 I2 ()} = 020 ([(1© J2(2)), o] 6z — ) — £2.Co 0ud(x — 1) ).

Constraint generating G gauge symmetry:
M+1 M+1

C(z) = Z Jt(z) + Z J (x) = 0.

Dynamics generated by light-cone Hamiltonians Py ~ &+ Z,f\il Rei Q(z) dz, where

z=(;
-1 - JA()
Q(z) = 2202) /dx (T(z,2),T(z,x)), ['(z,2) = ;_L ; R

1FoIIowing Feigin-Frenkel; Vicedo; Delduc-Lacroix-Magro-Vicedo; Lacroix, and specialising to a class of such models.



Affine Gaudin models 2

Classical integrability: Zero curvature condition:

[0y + L4(2),0- +L_(2)] =0, (ZCCQ)
Moot T(¢h)
Li(z)=B L, K= —21
() =Bt ) T CT P

where z: spectral parameter.

Recovering the Klim¢ik model: Choosing M =1, and

14?2 —e2F2¢
Zit_ ! - y git::l:_a
§
1 4 2 — 2 F 2¢5
’Zél::_ 2 €1 ) 63:::':

reproduces the Klim&ik model.



Perturbatively quantised AGMs in the UV

Conjecture’: a) One-loop RG-flow < flow of function ¢(2)

d d

- (2) = hh\/%(f(z)gp(z)) + O(R*), with certain f = f[y].

b) Limit K = 17 = 27 — 0, z;; — oo, RG fixed point.

«~ conformal/chiral limit: Defining £\ (") = limg_, o L1 (%) we get

(L)
LPE0) ~ BY 4y L8 (2 ~ 0,

up to gauge transformations. (ZCC) implies 6_£S}) = 0, chiral!
There is a second limit for the other chirality = Decoupling!

Let's focus on the chiral theory defined by dj’ (z<L)), and drop (L), + in notations.

2Part a) Delduc-Lacroix-Sfetsos-Siampos; b) Fateev for M = 1 (Klim&ik model); numerical checks for low M.



Our strategy: Entering quantum world through the side entrance

Usual approaches (canonical quantisation) start from the classical limit
h~1/K ~a" — 0. It may help to start from conformal limits instead.

e
Conformal limit: Chiral (VOA)
structure offers useful starting

point  for  quantisation  of
such models (algebra of local /v
observables) and quantisation of

integrable structure.

i
L

=%

Strategy: Understand integrable structure at conformal limit & deform away.

However:

Problems with non-ultralocality do not go away in the conformal limits!



Quantising chiral AGMs
Quantize Kac-Moody-currents J,.(z) = > Jr o(z)T?, with T°: basis for g:

[Jr,a(x) ; JS,b(y)} = =27 drs (fap Ir,c(®) 0(x — y) + 1k 1ap 020(x — ),

Quantised constraint Jqiag(x) 1= ny:l J-(x) ~ Algebra of local observables:

9, D... D9 ol h
coset VOA il EMt1 Pl +0() .
L h
Conjectured form of local charges®:
V
Q.= § PPV () d: Vy(2) = [ Spa(zia) do,
g
Sp_|_1(z, x) _ Tgl...ap-l-l :Pal(z7 CU) c. Fap+1(z7 :L*): —+ ... :
N-1 N (z)
k r,a

= — z)"T, [ (z,x) = ’ : Pochh tour,
P(z) 71;[1 (z — z) (z,x) 7;1 p—— v Pochhammer contour

with S, satisfying VOA conditions ensuring gauge invariance and [Q~ ., Q = 0.

’7’,q]

3Lacroix-Vicedo-You ng



Relation AGM to Klim¢ik model

Klim&ik model has been studied extensively* using the gauge-fixed formulation.

Central part of our work is a detailed comparison of gauged (AGM) and gauge-fixed
formulations of Klim&ik model on classical and quantum level, including:

e Classical level:

Gauge fixing of AGM Lax matrix ~~ Chiral limit of Kliméik Lax matrix

Lov(,2) = —(x2Viep + (1+x2)Voe ) — > 2V, h -

uvid, ) = —( XZ V4 €4 X7)V—€— 5 ~ Vo X'_1+V2’
Vi = (ivV1412 0103+ 010y £ v 046y) €%, er = (85),
Vo=—2(04¢5—1V14+12010,), h=(5_1) e-=(99).

Proof: Intricate computation of Dirac brackets.

e Quantum level: Comparison of quartic charge Q, 4.

*Bazhanov-Lu kyanov; Bazhanov-Kotousov-Lukyanov



Application | — ODE/IQFT-conjectures for sigma models

Recall: Relativistic AGM ~~ chiral AGMs in UV-limit. Thanks to Feigin and Frenkel:
UV limit of AGM: model for which there is ODE/IQFT-conjecture:

There is a one-to-one correspondence between the eigenstates of the quantum
affine Gaudin model associated to (sls, ¢), and differential operators

D, = —32 +v(z) + X P(2),

where P(z) = anv:l(z — z,.)*, and the function v(z) has second order poles
at z,,, r=1,..., N, and singularities x1, ..., xx with trivial monodromy.

(Such singularities are called apparent singularities. Triviality of monodromy
of V., around z1,...,xk, implies algebraic equations for x1,...,xx having
a discrete set of solutions.)

The corresponding eigenvalues of local IM Q. ,, are given in terms of v(z) as’

L ,= ]{P(z)_p/hvvp(z)dz, vp(2): certain differential polynomial in v(z).
g

®Bazhanov-Lu kyanov; generalisation: Lacroix-Vicedo-Young.



Application Il — Non-local IM in AGM 1

Non-ultralocality strikes back:
— So far no general proof of commutativity of quantum non-local IM in AGMs.

A conjecture of Bazhanov-Kotousov-Lukyanov (2018) suggests a solution: Let

1 27 1 27
Xo = / dz V. (x), X1 = / dzV_(x),
0 q_q_l 0 +( ) 1 q_q_l 0 ( )
. 20
Vi::lx/k3+28<,03—|—\/\/122(—|];2 8;0)2i\/k1+28g01 ei—\/kg% ks =y .
2(K3 +

Fact: Polynomials formed out of X;, X; can be renormalised such that

__mh_ () « o ! h
M(A) := e Vkst2 P exXPron ()\/ dz (VJr qg2er +V_q 2 e_))
0

can be defined as a formal power series in Xg, X;, A satisfying Yang-Baxter equation®

R(\/p) (M) @1id) (id © (i) = (id® M()) (M(A) @ id) R(A/s)  (YBE)

%There exist a renormalisation such that X0, X1 satisfy Serre relations of Uq(g[g). Claim thereby follows from results of
Bazhanov-Lukyanov-Zamolodchikov, Bazhanov-Khoroshkin-Hibberd relating M(A) to the universal R-matrix of Uy (sl2).



Application Il — Non-local IM in AGM 2

Conjecture: (Bazhanov-Kotousov-Lukyanov) M(\) admits a classical limit k; — oo

M(A) = e ™P5h P exp (— /O " dz Ly (z, Z(A))) ,

where z() is a formal power series in A, and Lyy(x, 2) is the classical Lax matrix of
the Klimcik model in the chiral limit.

The limit is subtle’ (renormalisation; spectral parameter z(\) scheme dependent).

However, validity of this conjecture would establish that

M(A): quantum counterpart of the classical monodromy matrix, satisfying YBE.

Unclear if the classical monodromy matrix satisfies an equally simple Poisson-algebra.

~» Suggestion: Construction of non-local IM in g-AGMs can follow YBE-paradigm.

7Kotousov—Lacroix—T., work in progress



Summary: Hidden structures in chiral AGMs

e AGM-formulation (~~ spin chain with affine Lie algebra symmetry) enables

— quantisation of algebra of local observables (VOA, W-algebra),
— construction of local conserved quantities.

Complex geometry of spectral parameter surface (affine Hitchin system)
helps understanding

— RG-flows,
— construction of local M,
— spectra (affine opers).

e Relations to quantum affine algebras help understanding non-local IM.

One may hope that these structures admit

deformations away from the conformal limits.



