Integrable sigma models at RG fixed points: quantisation as affine Gaudin models

Jörg Teschner

Talk in the conference "Integrability in Condensed Matter Physics and QFT" Based on work with Gleb Kotousov and Sylvain Lacroix

(arXiv:2204.06554 and work in progress)

University of Hamburg, Department of Mathematics and DESY

Troubles with integrable nonlinear sigma models

In the study of many integrable (quantum) field theories one is fortunate to benefit from Yang-Baxter algebra structures. Existence of a Lax pair $\left[\partial_x + \mathcal{L}_x(\lambda), \partial_t + \mathcal{L}_t(\lambda)\right] = 0$,

$$\Rightarrow T(\lambda) = \operatorname{Tr}(M(\lambda)), \ M(\lambda) := \overleftarrow{\mathcal{P}} \exp\left(\int_0^{2\pi} dx \ \mathcal{L}_x(x,\lambda)\right), \text{ is conserved.}$$

In many cases one finds that the Poisson-structure of the fields implies

$$\left\{ M(\lambda) \stackrel{\otimes}{,} M(\mu) \right\} = \left[M(\lambda) \otimes M(\mu), r(\lambda/\mu) \right].$$
 (clYBE).

Quantisation of such Poisson-structures is well-understood, leading to quantum groups etc.. One may benefit from existence of a large set of advanced mathematical tools.

There is, however, an important class of field theories, the nonlinear sigma models, where life is not that easy. Appearance of δ' -distributions in the Poisson-brackets of \mathcal{L}_x makes it hard, if not impossible, to get Poisson-brackets of the form (cIYBE).

→ non-ultralocality problem

This might indicate that completely new methods are necessary for this class.

A case study: The Klimčík model

Gauged formulation:

Configurations: Fields $(g_1, g_2) \in G \times G \mod (g_1, g_2) \mapsto (g_1h, g_2h)$.

$$\frac{\mathcal{A}}{4K} = \int \mathrm{d}t \,\mathrm{d}x \,\left\langle \left(g_1^{-1} \,\partial_+ g_1 - g_2^{-1} \,\partial_+ g_2\right), \left(1 - \mathrm{i}\varepsilon_1 \hat{R}_{g_1} - \mathrm{i}\varepsilon_2 \hat{R}_{g_2}\right)^{-1} \left(g_1^{-1} \partial_- g_1 - g_2^{-1} \partial_- g_2\right) \right\rangle,$$

where $\hat{R}(h) = 0$, $\hat{R}(e_{\pm}) = \mp i e_{\pm}$, $h \in \mathfrak{h}$, $e_{\pm} \in \mathfrak{n}_{\pm}$, and $K, \varepsilon_1, \varepsilon_2$: main parameters.

(ZCC)
$$\left[\partial_x + \mathcal{L}_x(z), \partial_t + \mathcal{L}_t(z)\right] = 0, \qquad \begin{aligned} \mathcal{L}_t(z) &= \mathcal{L}_+(z) + \mathcal{L}_-(z), \\ \mathcal{L}_x(z) &= \mathcal{L}_+(z) - \mathcal{L}_-(z), \end{aligned}$$
 where

$$\begin{split} \mathcal{L}_{\pm}(z) &= \frac{1}{4} \left(\varepsilon_{2}^{2} - \varepsilon_{1}^{2} \pm \mathrm{i}\varepsilon_{2} \,\hat{R}_{g_{2}} \mp \mathrm{i}\varepsilon_{1} \,\hat{R}_{g_{1}} + \xi \, z^{\pm 1} \right) \mathcal{I}_{\pm} + \frac{1}{2} \left(g_{1}^{-1} \,\partial_{\pm}g_{1} + g_{2}^{-1} \partial_{\pm}g_{2} \right), \\ \mathcal{I}_{\pm} &= 2 \left(1 \pm \mathrm{i}\varepsilon_{1} \,\hat{R}_{g_{1}} \pm \mathrm{i}\varepsilon_{2} \,\hat{R}_{g_{2}} \right)^{-1} \left(g_{1}^{-1} \partial_{\pm}g_{1} - g_{2}^{-1} \partial_{\pm}g_{2} \right), \\ \xi^{2} &= \left(1 - \left(\varepsilon_{1} + \varepsilon_{2}\right)^{2} \right) \left(1 - \left(\varepsilon_{1} - \varepsilon_{2}\right)^{2} \right). \end{split}$$

Reduced representation: $g := g_1 g_2^{-1}$, $\mathcal{L}_{\mu}^{(\text{inv})}(z) = g_2 \mathcal{L}_{\mu}(z) g_2^{-1} - (\partial_{\mu} g_2) g_2^{-1}$,

$$\mathcal{A} = 4K \int \mathrm{d}t \mathrm{d}x \, \left\langle g^{-1} \,\partial_{+} g \,, \, \left(1 - \mathrm{i}\varepsilon_{1} \hat{R}_{g} - \mathrm{i}\varepsilon_{2} \hat{R} \right)^{-1} \left(g^{-1} \partial_{-} g \right) \right\rangle \,.$$

A case study: The G = SU(2) Klimčík model – conformal limit

RG flow:
$$\varepsilon_1 = \frac{1}{\sqrt{(1 + \kappa^{-1} \nu^2)(1 + \kappa \nu^2)}}, \qquad \varepsilon_2 = \frac{\nu^2}{\sqrt{(1 + \kappa^{-1} \nu^2)(1 + \kappa \nu^2)}},$$

with running coupling κ (Fateev).

Target space near **conformal limit** $\kappa \to 1^-$:

More general: Classical Affine Gaudin Models¹ (AGMs)

All field theory parameters encoded in function $\varphi(z)$ of spectral parameter z

$$\varphi(z) = \frac{K}{\xi^2} \frac{\prod_{i=1}^{M} (z - \zeta_i^+) (z - \zeta_i^-)}{\prod_{r=1}^{M+1} (z - z_r^+) (z - z_r^-)} \qquad \left(\begin{array}{c} \text{holomorphic on surface } C_{0,2M+2} \\ C_{0,2N} := \mathbb{CP}^1 \setminus \{z_1^{\pm}, \dots, z_N^{\pm}\}. \end{array} \right)$$

Kinematics: Poles $z_r^{\pm} \mapsto \mathfrak{g}^{\mathbb{C}}$ -Kac-Moody currents $J_r^{\pm}(x)$ with levels $\ell_r^{\pm} = \underset{z=z_r^{\pm}}{\operatorname{Res}} \varphi(z)$, $\left\{ J_r^{\rho}(x) \overset{\otimes}{,} J_s^{\sigma}(y) \right\} = \delta^{\rho\sigma} \delta_{rs} \left(\left[\left(1 \otimes J_r^{\rho}(x) \right), \mathsf{C}_2 \right] \delta(x-y) - \ell_r^{\rho} \,\mathsf{C}_2 \,\partial_x \delta(x-y) \right).$

Constraint generating G gauge symmetry:

$$\mathcal{C}(x) = \sum_{r=1}^{M+1} J_r^+(x) + \sum_{r=1}^{M+1} J_r^-(x) \approx 0.$$

Dynamics generated by light-cone Hamiltonians $\mathcal{P}_{\pm} \approx \pm \sum_{i=1}^{M} \operatorname{Res}_{z=\zeta_{i}^{\pm}} \mathcal{Q}(z) \, \mathrm{d}z$, where

$$\mathcal{Q}(z) = \frac{-1}{2\varphi(z)} \int \mathrm{d}x \, \left\langle \Gamma(z,x), \Gamma(z,x) \right\rangle, \qquad \Gamma(z,x) = \sum_{\rho=\pm} \sum_{r=1}^{M+1} \frac{J_r^{\rho}(x)}{z - z_r^{\rho}} \,.$$

¹Following Feigin-Frenkel; Vicedo; Delduc-Lacroix-Magro-Vicedo; Lacroix, and specialising to a class of such models.

Affine Gaudin models 2

Classical integrability: Zero curvature condition:

$$\begin{bmatrix} \partial_{+} + \mathcal{L}_{+}(z), \partial_{-} + \mathcal{L}_{-}(z) \end{bmatrix} = 0, \qquad (\text{ZCC})$$
$$\mathcal{L}_{\pm}(z) = \mathcal{B}_{\pm} + \sum_{i=1}^{M} \frac{\mathcal{K}_{i}^{\pm}}{z - \zeta_{i}^{\pm}}, \qquad \mathcal{K}_{i}^{\pm} = \frac{\Gamma(\zeta_{i}^{\pm})}{\varphi'(\zeta_{i}^{\pm})},$$

where z: spectral parameter.

Recovering the Klimčík model: Choosing M = 1, and

$$z_1^{\pm} = +\frac{1+\varepsilon_1^2 - \varepsilon_2^2 \mp 2\varepsilon_1}{\xi}, \qquad \qquad \ell_1^{\pm} = \mp \frac{K}{\varepsilon_1},$$
$$z_2^{\pm} = -\frac{1+\varepsilon_2^2 - \varepsilon_1^2 \mp 2\varepsilon_2}{\xi}, \qquad \qquad \ell_2^{\pm} = \mp \frac{K}{\varepsilon_2}.$$

reproduces the Klimčík model.

Perturbatively quantised AGMs in the UV

Conjecture²: a) One-loop **RG-flow** \Leftrightarrow flow of function $\varphi(z)$

$$\frac{d}{d\tau}\varphi(z) = \hbar h^{\vee} \frac{d}{dz} (f(z)\varphi(z)) + O(\hbar^2), \quad \text{with certain } f = f[\varphi].$$

b) Limit $\kappa \to 1^- \Rightarrow z_i^+ \to 0$, $z_i^- \to \infty$, **RG fixed point**.

 \rightsquigarrow conformal/chiral limit: Defining $\mathcal{L}^{(L)}_{\pm}(z^{(L)}) = \lim_{\xi \to 0} \mathcal{L}_{\pm}(\frac{z^{(L)}}{\xi})$ we get

$$\mathcal{L}_{+}^{(\mathrm{L})}(z^{(\mathrm{L})}) \approx \mathcal{B}_{+}^{(\mathrm{L})} + \sum_{i=1}^{M} \frac{\mathcal{K}_{i}^{(\mathrm{L})}}{z^{(\mathrm{L})} - \zeta_{i}^{(\mathrm{L})}}, \qquad \mathcal{L}_{-}^{(\mathrm{L})}(z^{(\mathrm{L})}) \sim 0,$$

up to gauge transformations. (ZCC) implies $\partial_{-}\mathcal{L}^{(L)}_{+} = 0$, chiral!

There is a second limit for the other chirality \Rightarrow **Decoupling!**

Let's focus on the chiral theory defined by $\mathcal{L}^{(L)}_+(z^{(L)})$, and drop (L), + in notations.

²Part a) Delduc-Lacroix-Sfetsos-Siampos; b) Fateev for M = 1 (Klimčík model); numerical checks for low M.

Our strategy: Entering quantum world through the side entrance

Usual approaches (canonical quantisation) start from the classical limit $\hbar \sim 1/K \sim \alpha' \rightarrow 0$. It may help to start from **conformal limits** instead.

Conformal limit: Chiral (VOA) structure offers useful starting point for quantisation of such models (algebra of local observables) and quantisation of integrable structure.

Strategy: Understand integrable structure **at** conformal limit & deform **away**. However:

Problems with non-ultralocality do not go away in the conformal limits!

Quantising chiral AGMs

Quantize Kac-Moody-currents $J_r(x) = \sum_a J_{r,a}(x)T^a$, with T^a : basis for \mathfrak{g} :

$$\left[\mathsf{J}_{r,a}(x)\,,\,\mathsf{J}_{s,b}(y)\,\right]\,=\,-2\pi\,\delta_{rs}\left(f^c_{ab}\,\mathsf{J}_{r,c}(x)\,\delta(x-y)+\mathrm{i}\,k_r\,\eta_{ab}\,\partial_x\delta(x-y)\right),$$

Quantised constraint $J_{\text{diag}}(x) := \sum_{r=1}^{N} J_r(x) \rightsquigarrow \text{Algebra of local observables:}$

coset VOA
$$\qquad \frac{\hat{\mathfrak{g}}_{k_1} \oplus \ldots \oplus \hat{\mathfrak{g}}_{k_{M+1}}}{\hat{\mathfrak{g}}_{k_1+\ldots+k_{M+1}}}, \qquad k_r = -\frac{2\pi\ell_r + O(\hbar)}{\hbar}.$$

Conjectured form of **local charges**³:

$$\mathsf{Q}_{\gamma,p} = \oint_{\gamma} \mathcal{P}(z)^{-p/h^{\vee}} \mathsf{V}_{p}(z) \, dz \qquad \mathsf{V}_{p}(z) = \int \mathsf{S}_{p+1}(z,x) \, dx \,,$$
$$\mathsf{S}_{p+1}(z,x) = \pi^{a_{1}\dots a_{p+1}} \cdot \Gamma_{p-1}(z,x) - \Gamma_{p-1}(z,x) + \Gamma_$$

 $S_{p+1}(z,x) = \tau_p^{a_1...a_{p+1}} : \Gamma_{a_1}(z,x) \cdots \Gamma_{a_{p+1}}(z,x) : + \dots ,$

$$\mathcal{P}(z) = \prod_{r=1}^{N-1} (z - z_r)^{k_r}, \qquad \Gamma_a(z, x) = \sum_{r=1}^N \frac{\mathsf{J}_{r,a}(x)}{z - z_r}, \qquad \gamma \text{ Pochhammer contour},$$

with S_{p+1} satisfying VOA conditions ensuring gauge invariance and $[Q_{\gamma,p}, Q_{\gamma',q}] = 0$.

³Lacroix-Vicedo-Young

Relation AGM to Klimčík model

Klimčík model has been studied extensively⁴ using the **gauge-fixed** formulation.

Central part of our work is a detailed **comparison** of **gauged** (AGM) and **gauge-fixed** formulations of Klimčík model on classical and quantum level, including:

• Classical level:

Gauge fixing of AGM Lax matrix ~> Chiral limit of Klimčík Lax matrix

0

$$\begin{aligned} \mathcal{L}_{\rm UV}(x,z) &= -\left(\chi z \, V_+ \, {\bf e}_+ + (1+\chi z) V_- \, {\bf e}_-\right) - \frac{\chi}{2} \, z \, V_0 \, {\bf h} \,, \qquad \chi := \frac{4\nu^2}{1+\nu^2}, \\ V_{\pm} &= \left({\rm i} \, \sqrt{1+\nu^2} \, \partial_+ \phi_3 + \partial_+ \phi_2 \pm \nu \, \partial_+ \phi_1\right) e^{\pm 2 \, \phi_3}, \qquad {\bf e}_+ = \begin{pmatrix} 0 \ 1 \ 0 \ 0 \end{pmatrix}, \\ V_0 &= -2 \left(\partial_+ \phi_3 - {\rm i} \, \sqrt{1+\nu^2} \, \partial_+ \phi_2\right), \qquad {\bf h} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad {\bf e}_- = \begin{pmatrix} 0 \ 0 \ 1 \end{pmatrix}. \end{aligned}$$

Proof: Intricate computation of Dirac brackets.

• Quantum level: Comparison of quartic charge $Q_{\gamma,4}$.

⁴Bazhanov-Lukyanov; Bazhanov-Kotousov-Lukyanov

Application I – ODE/IQFT-conjectures for sigma models

Recall: Relativistic AGM \rightsquigarrow chiral AGMs in UV-limit. Thanks to Feigin and Frenkel:

UV limit of AGM: model for which there is ODE/IQFT-conjecture:

There is a one-to-one correspondence between the eigenstates of the quantum affine Gaudin model associated to $(\widehat{\mathfrak{sl}}_2, \varphi)$, and differential operators

$$\mathcal{D}_v = -\partial_z^2 + v(z) + \chi \mathcal{P}(z),$$

where $\mathcal{P}(z) = \prod_{r=1}^{N} (z - z_r)^{k_r}$, and the function v(z) has second order poles at z_r , $r = 1, \ldots, N$, and singularities x_1, \ldots, x_K with trivial monodromy.

(Such singularities are called apparent singularities. Triviality of monodromy of ∇_z around x_1, \ldots, x_K , implies algebraic equations for x_1, \ldots, x_K having a discrete set of solutions.)

The corresponding eigenvalues of local IM $Q_{\gamma,p}$ are given in terms of v(z) as⁵

$$I_{\gamma,p} = \oint_{\gamma} \mathcal{P}(z)^{-p/h^{\vee}} v_p(z) dz , \quad v_p(z): \text{ certain differential polynomial in } v(z).$$

⁵Bazhanov-Lukyanov; generalisation: Lacroix-Vicedo-Young.

Application II – Non-local IM in AGM 1

Non-ultralocality strikes back:

- So far no general proof of commutativity of quantum non-local IM in AGMs.

A conjecture of Bazhanov-Kotousov-Lukyanov (2018) suggests a solution: Let

$$\begin{aligned} \mathsf{X}_{0} &= \frac{1}{q - q^{-1}} \int_{0}^{2\pi} \mathrm{d}x \,\mathsf{V}_{+}(x) \,, \qquad \mathsf{X}_{1} = \frac{1}{q - q^{-1}} \int_{0}^{2\pi} \mathrm{d}x \,\mathsf{V}_{-}(x) \,, \\ \mathsf{V}_{\pm} &= : \frac{\mathrm{i}\sqrt{k_{3} + 2} \,\partial\varphi_{3} + \sqrt{k_{2} + 2} \,\,\partial\varphi_{2} \pm \sqrt{k_{1} + 2} \,\,\partial\varphi_{1}}{\sqrt{k_{2}(k_{3} + 2)}} \,e^{\pm \frac{2\varphi_{3}}{\sqrt{k_{3} + 2}}} \,, \quad k_{3} = k_{1} + k_{2} \,. \end{aligned}$$

Fact: Polynomials formed out of X_0 , X_1 can be renormalised such that

$$\mathsf{M}(\lambda) := e^{-\frac{\pi \,\mathsf{h}}{\sqrt{k_3+2}} p^{(3)}} \overleftarrow{\mathcal{P}} \exp_{\mathrm{ren}} \left(\lambda \int_0^{2\pi} \mathrm{d}x \, \left(\mathsf{V}_+ \, q^{\frac{\mathsf{h}}{2}} \, \mathsf{e}_+ + \mathsf{V}_- \, q^{-\frac{\mathsf{h}}{2}} \, \mathsf{e}_- \right) \right)$$

can be defined as a formal power series in X_0, X_1, λ satisfying Yang-Baxter equation⁶

$$R(\lambda/\mu)\left(\mathsf{M}(\lambda)\otimes\mathrm{id}\right)\left(\mathrm{id}\otimes\mathsf{M}(\mu)\right) \ = \ \left(\mathrm{id}\otimes\mathsf{M}(\mu)\right)\left(\mathsf{M}(\lambda)\otimes\mathrm{id}\right)R(\lambda/\mu) \quad \text{(YBE)}.$$

⁶There exist a renormalisation such that X₀, X₁ satisfy Serre relations of $\mathcal{U}_q(\widehat{\mathfrak{sl}}_2)$. Claim thereby follows from results of Bazhanov-Lukyanov-Zamolodchikov, Bazhanov-Khoroshkin-Hibberd relating M(λ) to the universal R-matrix of $\mathcal{U}_q(\widehat{\mathfrak{sl}}_2)$.

Application II – Non-local IM in AGM 2

Conjecture: (Bazhanov-Kotousov-Lukyanov) $M(\lambda)$ admits a classical limit $k_i \to \infty$

$$M(\lambda) = e^{-\pi P_3 \,\mathsf{h}} \stackrel{\leftarrow}{\mathcal{P}} \exp\left(-\int_0^{2\pi} \mathrm{d}x \,\mathcal{L}_{\mathrm{UV}}(x, z(\lambda))\right),\,$$

where $z(\lambda)$ is a formal power series in λ , and $\mathcal{L}_{UV}(x, z)$ is the classical Lax matrix of the Klimcik model in the chiral limit.

The limit is **subtle**⁷ (renormalisation; spectral parameter $z(\lambda)$ scheme dependent).

However, validity of this conjecture would establish that

 $M(\lambda)$: quantum counterpart of the classical monodromy matrix, satisfying YBE.

Unclear if the classical monodromy matrix satisfies an equally simple Poisson-algebra.

→ **Suggestion:** Construction of non-local IM in q-AGMs can follow YBE-paradigm.

⁷Kotousov-Lacroix-T., work in progress

Summary: Hidden structures in chiral AGMs

- AGM-formulation (~> spin chain with affine Lie algebra symmetry) enables
 - quantisation of algebra of local observables (VOA, W-algebra),
 - construction of local conserved quantities.

Complex geometry of spectral parameter surface (affine Hitchin system) helps understanding

- RG-flows,
- construction of local IM,
- spectra (affine opers).
- Relations to **quantum affine algebras** help understanding non-local IM.

One may hope that these structures admit deformations away from the conformal limits.