

European Research Council

Nonthermal superconductivity

Philipp Werner

University of Fribourg

Les Diablerets, February 2023

Nonthermal superconductivity

in collaboration with:

Martin Eckstein (Hamburg) Gil Refael (Caltech) Jiajun Li, Markus Mueller & Andreas Laeuchli (PSI) Yuta Murakami (RIKEN)

Les Diablerets, February 2023

Motivation

"Tuning" of material properties by external driving

- Enhancement and control of electronic orders
 - e.g. light-induced high-temperature superconductivity (?)

cuprates: Fausti et al., Science (2011), Kaiser et al., PRB (2014)

phonons excited by THz pulse

Motivation

"Tuning" of material properties by external driving

- Enhancement and control of electronic orders
 - e.g. light-induced high-temperature superconductivity (?)

cuprates: Fausti et al., Science (2011), Kaiser et al., PRB (2014)

phonons excited by THz pulse

Motivation

"Tuning" of material properties by external driving

- Enhancement and control of electronic orders
 - e.g. light-induced high-temperature superconductivity (?)

fullerides: Budden et al., Nature Phys. (2021)

stronger pump pulse (300fs - 300 ps)

Goal

- Explore nonthermal superconductivity in Hubbard models
 - I) Entropy cooling mechanism for producing "cold" photo-doped states
 - 2) eta-pairing in photo-doped Mott insulators on bipartite lattices
 - 3) Chiral superconductivity in photo-doped Mott insulators on frustrated lattices

- 5) Effective equilibrium approach for photo-doped Mott systems
- 6) Spin, charge and eta-spin separation in photo-doped ID systems

Goal

• Explore nonthermal superconductivity in Hubbard models

- I) Entropy cooling mechanism for producing "cold" photo-doped states
- 2) eta-pairing in photo-doped Mott insulators on bipartite lattices
- 3) Chiral superconductivity in photo-doped Mott insulators on frustrated lattices

numerical results based on dynamical mean field theory (DMFT)

5) Effective equilibrium approach for photo-doped Mott systems

6) Spin, charge and eta-spin separation in photo-doped ID systems

numerical results based on iterated time-evolving block decimation (iTEBD)

 Dynamical mean field theory DMFT: mapping to an impurity problem Georges & Kotliar, PRB (1992)

lattice model impurity model Δ DMFT self-consistency $G_{\rm loc}^{\rm latt}(i\omega_n)$ $S_{\rm imp}[\Delta(i\omega_n)]$ $G_{\rm loc}^{\rm latt} \equiv G_{\rm imp}$ momentum average impurity solver $\Sigma_k^{\text{latt}} \equiv \Sigma_{\text{imp}}$ $\frac{1}{i\omega_n + \mu - \epsilon_k - \Sigma_{\nu}^{\text{latt}}}$ G_k^{latt} $G_{\rm imp}(i\omega_n), \Sigma_{\rm imp}(i\omega_n)$

DMFT approximation

Conceptual question

Appearance of "fragile" electronic orders in highly nonequilibrium states

correlated electron system

Conceptual question

Appearance of "fragile" electronic orders in highly nonequilibrium states

Need to find ways to avoid heating

entropy cooling

correlated electron system

- Photo-doping from/to flat bands Werner, Eckstein, Mueller & Refael, Nat. Comm. (2019)
 - Dipolar excitations with appropriate frequency Ω transfer electrons from core to system and cool down the system

- Photo-doping from/to flat bands Werner, Eckstein, Mueller & Refael, Nat. Comm. (2019)
 - Dipolar excitations with appropriate frequency Ω transfer electrons from core to system and cool down the system

- Photo-doping from/to flat bands Werner, Eckstein, Mueller & Refael, Nat. Comm. (2019)
 - Dipolar excitations with appropriate frequency Ω transfer electrons from core to system and cool down the system

- Photo-doping from/to flat bands Werner, Eckstein, Mueller & Refael, Nat. Comm. (2019)
 - Entropy of the core band in the narrow band (atomic) limit:

$$S_{\text{core}} = -2n_{\sigma}\ln(n_{\sigma}) - 2(1-n_{\sigma})\ln(1-n_{\sigma})$$

In case of isentropic doping process:

 $\Delta S_{\rm core} \nearrow \Rightarrow \Delta S_{\rm system} \searrow$

cooling of system due to entropy reshuffling

- Photo-doping from/to flat bands Werner, Eckstein, Mueller & Refael, Nat. Comm. (2019)
 - Constant entropy contours in the filling-temperature plane

- Photo-doping from/to flat bands Werner, Eckstein, Mueller & Refael, Nat. Comm. (2019)
 - Constant entropy contours in the filling-temperature plane

AFM order

Entropy trapping

- Thermalization bottleneck prevents system from heating
 - e.g. recombination of electrons and holes can be very slow if the gap size is large

Nonthermal superconductivity in entropy-cooled systems

• η pairing in a repulsive Hubbard model with inverted population and positive effective doublon/holon temperature

Rosch, Rasch, Binz & Vojta, PRL (2008); Werner, Li, Golez & Eckstein, PRB (2019)

state with almost complete population inversion and "cold" effective T>0 prepared by entropy-cooling protocol

Nonthermal superconductivity in entropy-cooled systems

• η pairing in a repulsive Hubbard model with inverted population and positive effective doublon/holon temperature

Rosch, Rasch, Binz & Vojta, PRL (2008); Werner, Li, Golez & Eckstein, PRB (2019)

Nonthermal superconductivity in entropy-cooled systems

- Nonequilibrium phase diagram of photo-doped Mott insulators
- Use steady-state DMFT to control doublon concentration and T_{eff}

Li, Golez, Werner & Eckstein, PRB (2020)

steady-state formalism

- Nonthermal superconductivity in entropy-cooled systems
 - Nonequilibrium phase diagram of photo-doped Mott insulators
- (a) • Use steady-state DMFT to control doublon concentration and $T_{\rm eff}$ Li, Golez, Wegner & Eckstein, PRB (2020) full fermion bath 10^{4} 20 ¦afm n-pairing upper Hubbard 15 χ_η • 10^{3} 10 doublons 5 10² 6 -6 -4 -2 0 2 4 8 recombination β_{eff} 0 0.4 10^{1} (b) ъSC -5 holes n order -10 0.3 empty fermion bath appo 10⁰ ferromagnetism s-wave SC -15 CDW lower Hubbard 10^{-1} -20 0.1 0.2 0.3 0.4 0.5 0 d 0.1 steady-state formalism phase diagram 0.0

Nonthermal superconductivity in entropy-cooled systems

 \bullet Optical conductivity of the η pairing state

Li, Golez, Werner & Eckstein, PRB (2020)

- No gap in the real part (in contrast to s-wave SC)
- two-fluid picture: condensed doublons/holons coexist with normal singlons

Nonthermal superconductivity in entropy-cooled systems

- What happens in photo-doped systems on frustrated lattices?
- Can we realize an analogue of 120-degree order?

Li, Mueller, Kim, Laeuchli & Werner, arXiv (2022)

chiral superconducting state with loop currents

experimental signature:

second-order transverse supercurrent response for A along x

Nonthermal superconductivity in entropy-cooled systems

- What happens in photo-doped systems on frustrated lattices?
- Can we realize an analogue of I20-degree order?

Li, Mueller, Kim, Laeuchli & Werner, arXiv (2022)

 $\bullet\,$ Evidence from entropy-cooling protocol (for $\varphi=0)$

Nonthermal superconductivity in entropy-cooled systems

- What happens in photo-doped systems on frustrated lattices?
- Can we realize an analogue of 120-degree order?

Li, Mueller, Kim, Laeuchli & Werner, arXiv (2022)

• Evidence from exact diagonalization (12 sites)

Compute effective Hamiltonian by Schrieffer-Wolff transformation

Murakami et al., Comm. Physics (2022)

• U-V Hubbard model

$$H = -t_{\rm hop} \sum_{\langle i,j\rangle,\sigma} (c_{i\sigma}^{\dagger}c_{j\sigma} + h.c.) + H_U + H_V$$

• Photo-doping leads to steady-state with "cold" doublons/holons

Compute effective Hamiltonian by Schrieffer-Wolff transformation

Murakami et al., Comm. Physics (2022)

• U-V Hubbard model

$$H = -t_{\rm hop} \sum_{\langle i,j\rangle,\sigma} (c_{i\sigma}^{\dagger}c_{j\sigma} + h.c.) + H_U + H_V$$

• Eliminate terms which change number of doublons/holons/singlons

$$H_{\text{eff}} = H_U + H_{\text{kin,doublon}} + H_{\text{kin,holon}} + H_V + H_{\text{spin-ex}} + H_{\text{dh-ex}} + H_{\text{U-shift}} + H_{3\text{-site}}$$

$$H_{\text{spin-ex}} = J_{\text{ex}} \sum_{\langle i,j \rangle} \vec{s}_i \cdot \vec{s}_j$$

spin exchange term determines correlations between neighobring singlons

$$H_{\text{dh-ex}} = -J_{\text{ex}} \sum_{\langle i,j \rangle} \vec{\eta}_i \cdot \vec{\eta}_j$$

doublon-holon exchange term determines correlations between neighboring doublon-holon pairs

Compute effective Hamiltonian by Schrieffer-Wolff transformation

Murakami et al., Comm. Physics (2022)

• U-V Hubbard model

$$H = -t_{\rm hop} \sum_{\langle i,j\rangle,\sigma} (c_{i\sigma}^{\dagger}c_{j\sigma} + h.c.) + H_U + H_V$$

• Eliminate terms which change number of doublons/holons/singlons

$$H_{\text{eff}} = H_U + H_{\text{kin,doublon}} + H_{\text{kin,holon}} + H_V + H_{\text{spin-ex}} + H_{\text{dh-ex}} + H_{\text{U-shift}} + H_{3\text{-site}}$$

$$H_{\text{spin-ex}} = J_{\text{ex}} \sum_{\langle i,j \rangle} \vec{s}_i \cdot \vec{s}_j \qquad \eta_i^+ = (-1)^i c_{i\downarrow}^\dagger c_{i\uparrow}^\dagger \eta_i^- = (-1)^i c_{i\uparrow} c_{i\downarrow} \eta_i^- = (-1)^i c_{i\uparrow} c_{i\downarrow} \eta_i^z = \frac{1}{2} (n_i - 1)$$

Compute effective Hamiltonian by Schrieffer-Wolff transformation

Murakami et al., Comm. Physics (2022)

• U-V Hubbard model

$$H = -t_{\rm hop} \sum_{\langle i,j\rangle,\sigma} (c_{i\sigma}^{\dagger}c_{j\sigma} + h.c.) + H_U + H_V$$

• Eliminate terms which change number of doublons/holons/singlons

$$\begin{split} J_{\mathrm{ex}} &= \frac{4t_{\mathrm{hop}}^2}{U} \\ (\uparrow,\downarrow) &\to \underbrace{(\uparrow\downarrow,0)}_{\Delta E=U} \to (\downarrow\uparrow) \qquad \text{spin exchange is antiferro} \\ (\uparrow\downarrow,0) &\to \underbrace{(\uparrow,\downarrow)}_{\Delta E=-U} \to (0,\uparrow\downarrow) \qquad \text{doublon-holon exchange is ferro} \end{split}$$

Compute effective Hamiltonian by Schrieffer-Wolff transformation

Murakami et al., Comm. Physics (2022)

Introduce separate chemical potentials for doublons and holons

$$N_{h} = \sum_{i} n_{i}^{h}, \quad n_{i}^{h} = (1 - n_{i\uparrow})(1 - n_{i\downarrow})$$
$$N_{d} = \sum_{i} n_{i}^{d}, \quad n_{i}^{d} = n_{i\uparrow}n_{i\downarrow}$$

Introduce grand-canonical Hamiltonian for photo-doped state

Then use favorite equilibrium method to solve this problem

Compute effective Hamiltonian by Schrieffer-Wolff transformation

Murakami et al., Comm. Physics (2022)

- Static observables can be computed directly from $ho_{
 m eff} = e^{-eta_{
 m eff}K_{
 m eff}}$
- Response functions $-i\langle [A(t), B(0)]_{\pm} \rangle$ can also be computed, but
 - ullet initial state described by K_{eff}
 - ullet time propagation determined by $H_{
 m eff}$

must split the operators A and B into terms which change the doublon number by +1, 0, -1 and multiply these terms with appropriate phase factors

$$A = \sum_{\alpha} A_{\alpha} \quad H_{\mu} = -\sum_{G} \mu_{G} N_{G}$$
$$\lambda_{\alpha} = -\sum_{G} \mu_{G} \Delta N_{G,\alpha}$$
$$e^{-iH_{\mu}t} A_{\alpha} e^{iH_{\mu}t} = e^{-i\lambda_{\alpha}t} A_{\alpha}$$

 To determine the nonequilibrium phase diagram, measure the decay of spin, charge and eta-spin correlations, e.g. using iTEBD

Compute effective Hamiltonian by Schrieffer-Wolff transformation

Murakami et al., Comm. Physics (2022)

• Charge and eta-pairing correlations in the photo-doped ID U-V Hubbard model (H_{eff} without 3-site terms) at $n_d = n_h = 0.23$

charge correlations dominate for V=0.4

eta pairing correlations dominate for V=0.1, 0.2

Compute effective Hamiltonian by Schrieffer-Wolff transformation

Murakami et al., Comm. Physics (2022)

• "Zero effective temperature" phase diagram of photo-doped ID U-V Hubbard model (H_{eff} without 3-site terms)

Compute effective Hamiltonian by Schrieffer-Wolff transformation

Murakami et al., Comm. Physics (2022)

• Spectral functions of the photo-doped ID U-V Hubbard model $(H_{\rm eff}$ without 3-site terms)

not gapped for the eta-pairing phase

- Exact wave function in the limit of large on-site repulsion Murakami et al., arxiv:2212.06263 (2022)
 - Consider $H_{\rm eff}$ with fixed number of doublons and holons
 - Wave function in the limit $J_{ex} \rightarrow 0, V/J_{ex} = const$ is a generalization of the Ogata-Shiba state

Ogata & Shiba, PRB 41, 2326 (1990) (doped equilibrium model)

• For $J_{\rm ex} = V = 0$: Eigenstates of $H_{\rm eff}$ are degenerate w.r.t. spin and eta-spin configurations

 $H_{\rm kin, doublon} + H_{\rm kin, holon}$ does not flip spins or exchange d-h pairs

$$|\Psi\rangle = |\Psi_{\rm SF}^{\rm GS}\rangle|\Psi_{\sigma,\eta}\rangle$$

ground state of spinless Fermions

- Exact wave function in the limit of large on-site repulsion Murakami et al., arxiv:2212.06263 (2022)
 - Consider $H_{\rm eff}$ with fixed number of doublons and holons
 - Wave function in the limit $J_{ex} \rightarrow 0, V/J_{ex} = const$ is a generalization of the Ogata-Shiba state

Ogata & Shiba, PRB 41, 2326 (1990) (doped equilibrium model)

• For $J_{\rm ex} = V = 0$: Eigenstates of $H_{\rm eff}$ are degenerate w. r. t. spin and eta-spin configurations

 $H_{\rm kin, doublon} + H_{\rm kin, holon}$ does not flip spins or exchange d-h pairs

$$|\Psi\rangle = |\Psi_{\rm SF}^{\rm GS}\rangle |\Psi_{\sigma,\eta}\rangle \leftarrow \text{degeneracy of } 2^{N_s} 2^{N_\eta} \text{ lifted by } \mathcal{O}(J_{\rm ex}) \text{ terms}$$

ground state of spinless Fermions

- Exact wave function in the limit of large on-site repulsion Murakami et al., arxiv:2212.06263 (2022)
 - Consider $H_{\rm eff}$ with fixed number of doublons and holons
 - Wave function in the limit $J_{ex} \rightarrow 0, V/J_{ex} = const$ is a generalization of the Ogata-Shiba state

Ogata & Shiba, PRB 41, 2326 (1990) (doped equilibrium model)

• After taking into account the $\mathcal{O}(J_{ex})$ terms, the squeezed spin and eta-spin spaces get decoupled

$$H_{\text{spin}}^{\text{squeezed}} = J_{\text{ex}}^s \sum_i \vec{s}_{i+1} \cdot \vec{s}_i$$

$$H_{\eta-\text{spin}}^{\text{squeezed}} = -J_X^s \sum_j (\eta_{j+1}^x \eta_j^x + \eta_{j+1}^y \eta_j^y) + J_Z^s \sum_j \eta_{j+1}^z \eta_j^z$$

- Exact wave function in the limit of large on-site repulsion Murakami et al., arxiv:2212.06263 (2022)
 - Consider $H_{\rm eff}$ with fixed number of doublons and holons
 - Wave function in the limit $J_{ex} \rightarrow 0, V/J_{ex} = const$ is a generalization of the Ogata-Shiba state

Ogata & Shiba, PRB 41, 2326 (1990) (doped equilibrium model)

- Exact wave function in the limit of large on-site repulsion Murakami et al., arxiv:2212.06263 (2022)
 - Consider $H_{\rm eff}$ with fixed number of doublons and holons
 - Wave function in the limit $J_{ex} \rightarrow 0, V/J_{ex} = {\rm const}$ is a generalization of the Ogata-Shiba state

Ogata & Shiba, PRB 41, 2326 (1990) (doped equilibrium model)

- Exact wave function in the limit of large on-site repulsion Murakami et al., arxiv:2212.06263 (2022)
 - Consider $H_{\rm eff}$ with fixed number of doublons and holons
 - Wave function in the limit $J_{ex} \rightarrow 0, V/J_{ex} = const$ is a generalization of the Ogata-Shiba state

Ogata & Shiba, PRB 41, 2326 (1990) (doped equilibrium model)

- Exact wave function in the limit of large on-site repulsion Murakami et al., arxiv:2212.06263 (2022)
 - Consider $H_{\rm eff}$ with fixed number of doublons and holons
 - Wave function in the limit $J_{ex} \rightarrow 0, V/J_{ex} = const$ is a generalization of the Ogata-Shiba state

Ogata & Shiba, PRB 41, 2326 (1990) (doped equilibrium model)

 $|\Psi\rangle = |\Psi_{\rm SF}^{\rm GS}\rangle |\Psi_{\sigma}^{\rm GS}\rangle |\Psi_{\eta}^{\rm GS}\rangle$

eta-pairing phase has C=3

CDW phase has C=2

confirmed by iTEBD analysis of the entanglement entropy

Conclusions

- Nonthermal superconducting states in the Hubbard model
 - Mechanisms for realizing cold photo-doped Mott states
 - Entropy cooling: photo-doping from flat bands
 - Coupling to baths: injection of "cold" doublons and holes
 - Examples
 - eta-pairing on bipartite lattices
 - chiral superconductivity on geometrically frustrated lattices
 - Spin, charge and eta-spin separation in photo-doped ID Mott systems

```
Phys. Rev. B 100, 155130 (2019)
Phys. Rev. B 102, 165136 (2020)
arXiv:2202.10176 (2022)
Communications Physics 5, 23 (2022)
arXiv:2212.06263 (2022)
```