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1. Reflection relations and fermionic basis in quotient space

Central charge

c = 1−
6

p(p+ 1)
,

primary field Φα has dimension

∆α =
α(α− 2)

4p(p+ 1)
.

Here we work modulo left action of local integrals of motion i2j−1.

Consider Verma module of degree L. Virasoro basis is generated by l−2k

(p(L/2) of them), Heisenberg basis is generated by produced by p(L/2)
even monomials of a−j (not unique).

The matrix U
(L)

(α) in the quotient space is defined by

viΦα ≡ U
(L)

(α)i,jhjΦα ,

Two reflections : α → 2− α and α → −α.
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Fermions. As usual for I = {2i1 − 1, · · · , 2im − 1},

β∗
I = β∗

2i1−1 · · ·β
∗
2im−1, γ∗

I = γ∗
2im−1 · · ·γ

∗
2i1−1 .

It is convenient to extract transcendental multipliers

β∗
2j−1 = D2j−1(α)β

CFT ∗
2j−1 , γ∗

2j−1 = D2j−1(2− α)γCFT ∗
2j−1 ,

where

Dl(α) =
Γ
(
1
2 (α+ l(1 + p))

)
(
l−1
2

)
!Γ

(
1
2 (α+ lp)

) ,

and

βCFT ∗
I+ γCFT ∗

I− Φα = CI+,I−

(
P even
I+,I−({l−2k}) + dαP

odd
I+,I−({l−2k})

)
Φα .

with

dα =
(1− α)(2p+ 1)

p(p+ 1)
, CI+,I− = det

( 2

a+ b

)
a∈I+

b∈I−

.

The coefficients of the polynomials P even, P odd are symmetric under
α ↔ 2− α, in other words, they depend on ∆α only.

Later we shall use iI = i2i1−1 · · · i2im−1. . – p.3/19



Reflection relations

fI+,I−(α) =
∏

a∈I+

α+ a(p+ 1)

α+ ap

∏

a∈I−

α− ap

α− a(p+ 1)
fI+,I−(α+ 2)S

(l)
(α) ,

where

S
(l)
(α) = U

(l)
(−α)U

(l)
(α)−1,

Examples:

U
(2)

(α) =
(p− α)(α+ p+ 1)

4p(1 + p)
,

U
(4)

(α) =
1

288



2
(
9− α3(1+α)

p2(1+p)2 − 3α(2+α)
p(1+p)

)
24
( (1+α)(3+4α)

p(1+p) − 3
)

α2

p(p+1)

(
6− α(3+α)

p(p+1)

) 12α(3+α)
p(1+p)


 .
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2. Solution for quotient space

Introducing

det
(
U

(L)
(α)

)
= N (L)(α)

D
(L)
V (∆α)

D
(L)
H (α2)

,

we look for the solution in the form

P even
I+,I− = v1 +

1

D
(k)
V (∆, c)

p(k/2)∑

i=2

XI+,I−,i(∆, c)vi ,

P odd
I+,I− =

1

D
(k)
V (∆, c)

p(k/2)∑

i=2

YI+,I−,i(∆, c)vi .

The polynomials XI+,I−,i(∆, c), YI+,I−,i(∆, c) have degree D in ∆, the de-

gree D is a parameter of our construction.
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We require consistency with the Heisenberg basis:

βCFT ∗
I+ γCFT ∗

I− Φα = CI+,I−

∏

a∈I+

(α+ a(p+ 1))
∏

a∈I−

(α− ap)

×
(
Qeven

I+,I−({a−k}) + gαQ
odd
I+,I−({a−k})

)
Φα , g(α) =

2p+ 1

2
α .

The coefficients of the polynomials Qeven, Qodd are even in α.
Introduce even and odd under p ↔ −p− 1 parts

T+
I+,I−(α) =

1

2

{ ∏

a∈I+

(α− a(p+ 1))
∏

a∈I−

(α+ ap)

+
∏

a∈I+

(α+ ap)
∏

a∈I−

(α− a(p+ 1))
}
,

T−
I+,I−(α) =

1

2(2p+ 1)

{ ∏

a∈I+

(α− a(p+ 1))
∏

a∈I−

(α+ ap)

−
∏

a∈I+

(α+ ap)
∏

a∈I−

(α− a(p+ 1))
}
.

. – p.6/19



This consistency with the Heisenberg basis leads to the requirements

First, the polynomial

D
(L)
V (∆−α)D

(L)
H (α2)

×
{
T+
I+,I−(α)

(
D

(L)
V (∆α)U

(L)
1,j (α) +

p(L/2)∑

i=2

XI+,I−,i(∆α)U
(L)
i,j (α)

)

−
(2p+ 1)(1− α)

p(p+ 1)
T−
I+,I−(α)

p(L/2)∑

i=2

YI+,I−,i(∆α)U
(L)
i,j (α)

}
is even in α ,

Second,

D
(L)
V (∆−α)D

(L)
H (α2)

×
{
T−
I+,I−(α)

(
D

(L)
V (∆α)U

(L)
1,j (α) +

p(L/2)∑

i=2

XI+,I−,i(∆α)U
(L)
i,j (α)

)

+
1− α

p(p+ 1)
T+
I+,I−(α)

p(L/2)∑

i=2

YI+,I−,i(∆α)U
(L)
i,j (α)

}
is odd in α ,
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The unknown are the coefficients of the polynomials XI+,I−,i(∆) and

YI+,I−,i(∆). The number of unknowns is

#(unknowns) = 2(p(L/2)− 1)(D + 1) .

The number of equations is

#(equations) = p(L/2)

×
(
2deg∆(D

(L)
V (∆, c)) + degα(D

(L)
H (α2, Q2)U (L)(a)) + 2#(I+) + 2D + 1

)
.

For sufficiently large D the system is overdetermined, and the very

existence of solution is a miracle produced by our fermionic basis.

The solutions have been found up to level 12.

It seems for L ≥ 6, deg∆(D
(L)
V (∆, c)) = (L/2− 3)2 + 1 and the degree of

the numerator is deg∆(D
(L)
V (∆, c)) + 1.
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Example

P even
{1,3},{3,1} = l

4
−2 +

4(c− 22)

3
l−4l

2
−2 −

1

9

(
8(c− 25)∆α + c2 − 34c+ 333

)
l
2
−4

+
2

15

(
8(c− 28)∆α + 5c2 − 193c+ 1544)

)
l−6l−2 −

4

3
(24∆α + 11c− 71)l−8

−
5c− 122

42(∆α + 4)
w

(8)
4 −

1

42(∆α + 11)
(5c2 − 526c+ 8648)w

(8)
11

where

w
(8)
4 = 28l−4l

2
−2 − 3(c− 36)l2−4 + 2(5c− 12)l−6l−2 − (5c2 − 325c+ 4128)l−8 ,

w
(8)
11 = 3l2−4 + 4l−6l−2 + (5c− 89)l−8 .
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3. Lifting the quotient space restriction

We have the congruency valid in the quotient space

∏

l∈I+

Dl(α)
∏

l∈I−

Dl(2− α)
(
P even
I+,I−({l−2k}) + dαP

odd
I+,I−({l−2k})

)
Φα

≡
∏

l∈I+

(α+ (p+ 1)l)Dl(α)
∏

l∈I−

(α− pl)Dl(2− α)

×
(
Qeven

I+,I−({a−k}) + gαQ
odd
I+,I−({a−k})

)
Φα .

In the complete space

∏

l∈I+

(α+ (p+ 1)l)Dl(α)
∏

l∈I−

(α− pl)Dl(2− α)

×
(
Qeven

I+,I−({a−k}) + gαQ
odd
I+,I−({a−k})

)
Φα

=
∏

l∈I+

Dl(α)
∏

l∈I−

Dl(2− α)
(
P even
I+,I−({l−2k}) + dαP

odd
I+,I−({l−2k})

)
Φα

+
∑

|I+|+|I−|

=|K|+|J+|+|J−|

CK,J+,J−

I+,I− (α)iK β∗
J+γ

∗
J− Φα ,
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In order to satisfy the reflection α → 2− α, I+ ↔ I− we add the sum

∑

|I+|+|I−|

=|K|+|J+|+|J−|

BK,J+,J−

I+,I− (α)iK β∗
J+γ

∗
J− Φα .

Since we do not want to spoil the α → −α symmetry we require

BK,J−,J+

I+,I− (α) = BK,J−,J+

I+,I− (−α) .

Now we want to satisfy the α → 2− α symmetry. Since the first term in the
right hand side respects this symmetry, the requirement reduces to

CK,J+,J−

I+,I− (α) +BK,J+,J−

I+,I− (α) = CK,J−,J+

I−,I+ (2− α) +BK,J−,J+

I−,I+ (2− α) .

All this leads to the linear difference equation for

BK,J+,J−

I+,I− (α)−BK,J+,J−

I+,I− (α− 2) = CK,J−,J+

I−,I+ (2− α)− CK,J+,J−

I+,I− (α) .

It is quite remarkable that the non-linearity of the problem is completely
taken care of by out quotient space calculation. . – p.11/19



Example of level 2

β∗
1γ

∗
1Φα =

{
D1(α)D1(2− α)l−2 +A(α)i21

}
Φα .

where

A(α) = Ã(α)−D1(α)D1(2− α)
α+ 1

α
+

i

4
cot

πp

2
C1(p)

2 ,

BLZ constants:

C2n−1(p) = −
√
πp(p+ 1)

Γ
(
1
2 (2n− 1)(1 + p)

)

n!Γ
(
1 + 1

2 (2n− 1)p
)

The main part is

Ã(α) = sin π
2 (α− p) sin π

2 (α+ p)

×
1

π2i

∞∫

−∞

tanh π
2 (t+ iα)

∣∣∣∣Γ
(
1− p+ it

2

)
Γ

(
2 + p− it

2

)∣∣∣∣
2

t

1 + t2
dt .

We require analyticity for 0 < α < 2 (natural), bounded for Im(α) → ±∞
(not so obvious).
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Our results must agree with the null-vectors.

The null-vectors allow rather simple description in the fermionic basis
which goes back to the quantum Riemann bilinear relation.

Introduce

Qk = res
z=∞

τ ∗(z)1/2γ(z)
dz

zk+1
,

Ck = res
z=∞

(
β∗(z) + res

w=∞

(
tk(z/w, α)τ

∗(z)
1
2 τ ∗(w)

1
2γ(w)

dw

w

))
γ(z)

dz

z2k+1
.

where

τ ∗(z) = exp
( ∞∑

j=1

C2j−1(p)z
−(2j−1)

i2j−1

)

and

tk(z, α) =
1
2 t0(α) +

k−1∑
j=1

(−1)j cot π
2 (α− (p+ 1)j)zj .

This is a periodical function of α with period 2.
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The null-vectors for Φm,n, n ≥ m:

Even n: C
n

2

n−mH−n

Odd mn: Qn−mC
n−1

2

n−m, and C
n+1

2

n−mH−n−1

Singular vector on level 2:

C1γ
∗
3γ

∗
1Φ1,2 = β∗

1γ
∗
1Φ1,2 = D1(p)D1(2− p)

(
l−2 −

p+ 1

p
l
2
−1

)

lim
α→p

sin π
2 (α− p) sin π

2 (α+ p)

π2i

∞∫

−∞

t tanh π
2 (t+ iα)

∣∣Γ
(
1−p+it

2

)
Γ
(
2+p−it

2

)∣∣2

1 + t2
dt

= −
i

4
cot

πp

2
C1(p)

2 .

This is not very impressive. . – p.14/19



On the level 3 here is one more identity which includes the fermions β∗
1γ

∗
1

only:

Q2C2γ
∗
5γ

∗
3γ

∗
1Φ1,3

=
(
C1(p)i1β

∗
1γ

∗
1 −

1

24

(
(3 cot(πp) + 2 tan(π2 p))C1(p)

3
i
3
1 − 24 tan(π2 p)C3(p)i3

)
Φ1,3

= C1(p)D1(2p)D1(2− 2p)
(
i1l−2 +

1 + 3p

6(1− p)
i3 −

1 + p

3p(1− p)
i
3
1

)
Φ1,3 .

The coefficient of i1l−2 is automatically correct.

The coefficient of i3 is non-trivial, but it follows from gamma-function
identity

C3(p) =
1 + 3p

6(1− p)
C1(p)D1(2p)D1(2− 2p) cot(π2 p) .

The coefficient of i31 leads to quite non-trivial integral identity.
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Lemma. The following integral can be evaluated exactly

∞∫

−∞

tanh π
2 (t+ 2pi)

∣∣Γ
(
1
2 (1− p+ it)

)
Γ
(
1
2 (2 + p+ it)

)∣∣2 t

t2 + 1
dt

=
πp(p+ 1)

12 sin(πp)

(
Γ
(
− 1

2p
)
Γ
(
1
2 (p+ 1)

))2

+
1

4
(2p− 1)(p+ 1)Γ

(
− 1

2 (p+ 1)
)
Γ
(
3
2 (p+ 1)

)
Γ
(
1
2p

)
Γ
(
− 3

2p
)
.

Here we imply |p| < 1/2, for other values the integral is to be continued

analytically since the poles start to cross the real line.
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Proof We shall proceed as when proving the Barnes lemmas: computing
certain integral by shift of variables ones derives the functional equation
with respect to the parameter. Introduce the notation

g(t, p) = tanh π
2 (t+2pi)Γ

(
1
2 (1−p+it)

)
Γ
(
1
2 (1−p−it)

)
Γ
(
1
2 (p+it)

)
Γ
(
1
2 (p−it)

)
,

where we avoid using the absolute values since g(t, p) will be needed as

an analytical function. Set

f(t, p) = i
2 (1− p+ it)(p+ it)g(t, p) .

We have
tg(t, p) = f(t+ 2i)− f(t) ,

which allows to compute

∞∫

−∞

tg(t, p)dt = −2πi res
t=i(1−2p)

f(t, p)dt ,

obviously the simple pole at t = i(1− 2p) is the only singularity of f(t, p) in

the strip 0 ≤ Im(t) ≤ 2.
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Denote the integral in the left hand side of Lemma by I(p), its integrand is

I(t, p) = t
t2 + p2

4(t2 + 1)
g(t, p) .

The function I(p− 2) is obtained by the analytical continuation

I(p− 2) =
( ∞∫

−∞

− 2πi
(

res
t=i(1−2p)

+ res
t=i(3−2p)

)) t2 + (p− 1)2

4(t2 + 1)
tg(t, p)dt .

We find the combination of I(p) and I(p− 2) in which the integrand with

the denominator t2 + 1 cancels:

p(p− 2)I(p)− (p2 − 1)I(p− 2) =
1− 2p

4

∞∫

−∞

tg(t, p)dt

+ 2πi(p2 − 1)
(

res
t=i(1−2p)

+ res
t=i(3−2p)

) t2 + (p− 1)2

4(t2 + 1)
tg(t, p)dt

=
p(1 + p)(9p3 − 34p2 + 47p− 18)

2(−2 + p)(−1 + 3p)(1 + 3p)
Γ
(
− 1

2 (p+ 1)
)
Γ
(
1
2 (p+ 1)

)
Γ
(
1
2p

)
Γ
(
− 3

2p
)
.

. – p.18/19



Form this identity it is easy to conclude conclude that the function

G(p) =
(
Γ
(
− 1

2p
)
Γ
(
1
2 (p+ 1)

))−2

×
(
I(p)−

1

4
(2p− 1)(p+ 1)Γ

(
− 1

2 (p+ 1)
)
Γ
(
3
2 (p+ 1)

)
Γ
(
1
2p

)
Γ
(
− 3

2p
)))

,

is periodic:

G(p) = G(p− 2) .

This function decreases as O(e−π|t|) as t → ±i∞. To see this it is

convenient to symmetrise the integrand in I(p) which amounts to

replacing tanh π
2 (t+ 2pi) by sinh(πt)/| cosh π

2 (t+ 2pi)|2. Then even if the

first multiplier in the right hand side grows, the expression in brackets
decays faster. It remains to figure out the singularities. They are simple

poles at integer p, in particular at this points the contour of integration in

I(p) is pinched by singularities of the integrand. So the periodic function in

question is proportional to 1/ sinhπp, the coefficient π
12 can be easily

found by evaluation at the point p = 0.
QED
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