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The nearest-neighbour XXZ spin chain

spin 1/2 su(2) representation

Heisenberg model: Hxxz = JZ 07+ o]0l +Acjoi, — A)

~1
A q+q

D)

q—>1 — A—1

isotropic Heisenberg model: Hxxx = J Z(P g+l — 1)

N

spin permutation



The nearest-neighbour XXZ spin chain

Boundary conditions and symmetry:

the 1sotropic XXX model possesses su(2) symmetry [Hxxx, 5% =0, a=ux,v,
1 N
the periodic XXZ model has only u(1) symmetry [Hxxz,5°) =0  S=5) o
j=1
for particular boundary conditions, the open XXZ chain has U,sl(2) symmetry
q_l N-1
H, = Z hij i+ + —oy) €; [Pasquier, Saleur, 90]
7=1

Temperley-Lieb (TL) generators: e; = —hijjr1 — ]

TL algebra: 6? =(q+a7") ¢
ejejilej = ej ,
ejer = €re; (for j £k, k£1),



The nearest-neighbour XXZ spin chain

Boundary conditions and symmetry:
The closed chain can have twisted b.c: 01 = 0F and oy, = €T

For |q| =1, A <1 in the large size limit, close to the antiferromagnetic state, the system
is approximated by a 2d CFT —— lattice regularisation of (non-unitary) CFTs

[ Koo, Saleur, 94]

The (effective) central charge depends on the twist . 3_ ¢ q=e"

[Klumper, Batchelor, Pearce, 91]

Special points: p=0 c=1,

72

¢ = £2v c=1—-6
m(m =)

When g =e'"1  (qroot of unity) we retrieve known CFTs, e.g.

q=1 c=1 or —2



The nearest-neighbour XXZ spin chain

q=1t: c=1 or —2

At A =0 the model can be solved by the Jordan-Wigner transformation:

'Lﬂ' + —_
C] Zl 1(01 +1> ] : cj = Zl 1 (al +1> ] {Cj 7Ck} — 5]I€

N N

_ + = ot ) +,. + .
Hxx =) (Uj—HOj T O Uj+1) = <Cj Cj+1 T Cj—l—lcj>
j=1 j=1

the boundary conditions for the chain influence the boundary conditions for the fermions
hence the change in the central charge (Dirac versus symplectic fermions in the CFT limit)

for twisted boundary conditions the chain can be mapped to an alternating gl(1|1)-symmetric
spin chain via the non-unitary transformation

= fi=E) gy A = (-1 0

— the spectrum contains indecomposable representations [Gainutdinov, Read, Saleur, 11]



The isotropic Haldane Shastry Hamiltonian q—1

[Haldane, 88; Shastry, 88]

N spins 1/2 on a circle with periodic boundary conditions zj — wl = ?mI/N
HHS = — V(Z@, Z) Pz Viz. 2:) = Zi%j _
2, V) B B PR LT R VI

The model has much more symmetry (Yangian) compared to its nearest-neighbour
cousin XXX

the spectrum 1s much simpler, in particular there are no bound states; encoded in
motifs (collections of M integers between 1 and N-1)

M1 Ho e Har

Qoooooooooooooo M magnon motif

h) : _

oA, o A = pinrmn = 2M =) =1 s g 1
?OgOOQA’OlOOOOOO]\CTD 1 “vacuum” M magnon motif

|M§

=<l -

(N - :um)



The isotropic Haldane Shastry Hamiltonian

The solution of the Haldane-Shastry model in not obtained by Bethe Ansatz but
from the link with the spin Calogero-Sutherland model:

[Polychronakos 92, Bernard, Gaudin, Haldane, Pasquier, 93]

. N
Dynamical model: Hy = 9 > (20" +8)

o i< Zid 2

Ri %

(B F Pij)

1s diagonalised on functions completely (anti)symmetric by permutations of spins and

coordinates N
i<j
U = Z W (2401 i0ringds Zinsizoing}) 191582, -, T0r))

11<12<...<t)f

/

partially (anti)symmetric in two complementary groups of variables
v, i) = g, oy, [ )

eigenfunctions of the CS model: partially symmetrised, non-symmetric Jack
polynomials



The isotropic Haldane Shastry Hamiltonian

in principle, all the eigenfunctions of Haldane-Shastry should be obtainable from those of the
su(2) CS model by freezing i.e. by sending 3 — ~

this fixes the positions of the particles in the minima of the potential thus creating
the regular periodic lattice

Zj— w = e2mi/N

N
W (241 imsing}> Zitsiningt) — U (Zirs Zigs -+ Zing) using Z 27 = N 0p,0 mod N
=1

For the states which are Yangian highest weights we have
[BGHP, 93]

[Bernard, Pasquier, D.S., 93]

@DA(ZL B2y e v 7ZM) — H (Zm - zn)Q Pf:2(217 I ZM)
[Lamers, D.S, 22]

m<n /

symmetric Jack polynomials labelled by partitions N=2M+1=2Mh2=...2 Ay 21



The q-Haldane-Shastry Hamiltonian (Uglov-Lamers)

[Bernard, Gaudin, Haldane, Pasquier, 93; Uglov 95; Lamers 18]

The XXZ model can also be deformed to accommodate for long-range interaction,
at the price of introducing multi-spin interaction

o [V

1<J
Ri %5 N _ 4—N
Vi(zi,zi) = Nl — 9 q
(21, 23) (@zi —q7'zj)(a7 2 — q 2j) M= g
u v 0 O 0 O
zZ1 Zi—1 Zi Zi+1 """ Zj—1 2§ Zj+1 ZN 0 q—l -1 0
= = €;
- M 0 -1 q O
uov 0O 0 0 0
q-antisymmetriser
SL qo=
[4.] TL generator
vV U
>< = R(u/v)
<1 ZN u v
. u—1
Rikv1(u) =1— f(u) e, flu) = —




The Uglov-Lamers Hamiltonian

There exists another Hamiltonian with the opposite “chirality”

Z1 Zi—1 Ri Ri+1 " Rj—1 Z5 Rj+1 ZN
~r V] Z R y
H™ = N V(Zz, Zj) S[?%j] Z
1<J Zi
R %
S[Z- j] — Zi+1 -+ Rj—1 }'\/\/\,
) Zi
[HL? HR] — 0 ><Z
Z1 Zi—1 Ri Zi41 " Zj—1 %5 Zj4+1 RN

Both Hamiltonians can be diagonalised simultaneously and the spectrum can be
written 1n terms of motifs, with eigenvalues

H= %(ﬁL +H®)  has real spectrum both for q real and |q] =1

() = 5 (H(n) + e (w)) =

; ][N —n)

DO | —



The eigenvectors of the Uglov-Lamers model
[Lamers, Pasquier, D.S., 20]

There exists an explicit expression of the (equivalent of) highest weight vectors

one for each multiplet of the quantum affine algebra (for each motif)

N
Wy = > W (in, ey in) in, e i)

11 <--<ipg

the component where all the reversed spins are at the left is particularly simple

\Ij/ﬁ(la"'aM) — <<1,,M’,LL> :ve\i)\(M)(Zl,”-,ZM)

{Ivf)\<2:1, " '7ZM) = ( H (q Zm — q_lzn> (q_lzm — qzn)>P§(Zla' . '725]\/[)

Py | 1s a Macdonald polynomial with parameters q = (t*)l/ = q



The eigenvectors of the Uglov-Lamers model

The other components are slightly more involved and they correspond to transport
of the indices using the Hecke generators (generalising the permutations)

\Ijﬂ(ib o 77’M) — <<i17' ) 77’M|:u> - evw<Tp01 {\I})\(,u)(zla o 7ZM))

{il"”)iM}

11 M

L ANJZRRN
AN
T{i1,---,iM} = T('L'1,---,1) e T(z'M,---,M) = AN AN W

Il

1 M N

TG, =1j-1- 1

This result nicely generalises the construction of the eigenvectors of the ordinary
Haldane-Shastry model



Th Uglov-Lamers model at g=i

The integrable structure of the isotropic Haldane-Shastry model can be retrieved
in the c=1 CFT with affine su(2) symmetry  [Haldane et al. 92, Bernard, Pasquier, D.S., 94]

What about the low energy limit of the g-HS model at |q| = 1? What is the symmetry
of the model for q root of unity?

The simplest case to look at 1s g=1, because of the link with the free fermions

Ripri(w) =1—f(u)ex,  flu)= qzjb—_;—l
Since flu)+ fut) = (q+aq D)) fu) — W) =—f(w)
g=1

in particular f(w) =—f(w™’) = tan(mj/N)



Th Uglov-Lamers model at g=i

in this case the spin interaction can be written exclusively with in terms of nested

commutators of the TL generators

elm+1] = €1, €11, - [em—1,m] .. )] = [ - - ler, er41]s - - - €m—1], €]

for example:

and 1n general:

!

Jacobi identity and TL algebra

SE,H;),] = Clii+1] — fQ(WQ)e[z'+1,z'+2] + f2(w2)f2(w)€[7;+2,z'+3]

T f(WQ)e[z’,i+2] — f2(w2)f(w)e[i+1,i+3] T f(w2)f(w)€[z',7;+3]

k—1 k—I l m—1
l 2/ k—i k—I—
Sb,j%] — (—1) Hf (") Hf(w ") Cli+1,5+1+m]
1=0 m=1 i=1 n=1
k—1 k—I l - m-1
k] = (—1)Fmt HfQ(wk_Z) Hf(wk_l_n) €[jtk—l—m,j+k—I]
=0 m=1 i=1 n=1



Th Uglov-Lamers model at g=i

There are two subtleties in defining the Hamiltonian at q=i :

since [2k] =0 and [2k+1] = (-1)"

1
at N =2L+1; e(n) = §[n] [N —n] =0 the total energy is identically zero

the total Hamiltonian is also zero for odd number of sites:

H= Z (hzls,q + hg,q) €lp,q+1]

1<p<qg<N
hpg = —hpq s I1<p<qg<N explicit but tedious expressions/proof
TO DO: fermionic expression: ej = (fj+ + jﬁrl> (fj + fi+1)

the nested TL commutators are quadratic in fermions — long-range free fermionic model



Th Uglov-Lamers model at g=i

One can get a non vanishing non-chiral Hamiltonian by expanding to the next order in

q+qt
ﬁ = lim H
q—=iq+q!

[ﬁv ﬁR] — _[ﬁv ﬁL] =0

the eigenstates of the chiral and the rescaled Hamiltonians are the same

; - 1‘0 . 2‘0 . 3‘0 -
result for the one-magnon dispersion relation: e C . e
( ) n n — Qk -10 oo
£(n) = lim c n—l _ (_1)L—1 2 : . .
=i+ q N;n, n=2k+1 15 . T
—20}0 : ‘

it might be possible, though hard, to get an explicit expression in terms of fermions



Th Uglov-Lamers model at g=i

The second subtlety appears at Neven N = 2L

in this case the dispersion relation 1s regular, but there are divergences (double poles)
1n the matrix elements of the Hamiltonians, since:

1 9
(q+q71)? - q+q!

Vjj+L =

One of the poles is killed by the factor [N] in the Hamiltonian, but the second has to

be killed “by hand” by multiplication with q—+q-!

Result: a Hamiltonian with finite matrix elements but with i1dentically zero eigenvalues!

1 : : : :
Example: for N=2 2H = = 1s a projector with eigenvalues 0°3, 1
q-Tdg
0 0 0 0
~-1 .
after rescaling, 2H(q+q ') =¢; = 8 q_l ql 8 —» Jordan block at g=i
00 0 0



Th Uglov-Lamers model at g=i

Algebraic origin of the Jordan blocks at N even: gl(1|1) symmetry

at each site we have gl(1]1) representation with alternating central charge £;
|Gainutdinov, Read, Saleur, 11]

{7 iy =(=1Y=E;, Nj=(-1ff;,
Ny fil=—f,  INuf=1
N N

N
global generators: Fr=>fr, FR=>fi, N=>(-1ff-L, E=) E
j=1

J=1 g=1

central element

Jordan blocks <+— 1ndecomposable representations of gl(1|1), at E=0

Experimentally, at larger lengths N=2L, the largest Jordan cell has size L+1

extended symmetry?



Conclusions and open questions

- New fermionic long-range integrable model with extended (super)symmetry

- The odd and even lengths have very different properties (linear dispersion relation
vs. Jordan blocks)

« Closed form expressions for the (regularised) matrix elements

- Identify the extended symmetry of the model
- Relation with non-unitary CFTs; Vertex operator construction
+ The g=1 limit of the eigenfunctions

+ Other roots of unity: ¢*3=1 and ¢=0 CFT; gl(2|]1) symmetry

- Higher rank?

+ g-Inozemtsev at g=1?



