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isotropic Heisenberg model:

spin permutation 

spin 1/2 su(2) representation 



Boundary conditions and symmetry:

the isotropic XXX model possesses su(2) symmetry

the periodic XXZ model has only u(1) symmetry

for particular boundary conditions, the open XXZ chain has               symmetry
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[Pasquier, Saleur, 90]
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Temperley-Lieb (TL) generators: 
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and we assume periodic boundary conditions, �a
j = �

a
j+N . A convenient parametrisation

for the spin isotropy is

� =
q + q
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2
. (1.3)

When q is real � � 1, while for q unimodular |q| = 1, �  1. The Hamiltonian density in
(1.1) is closely related to the generators of a Temperley-Lieb algebra,
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Write down the other relations of TL generators. Upon summation, in the periodic case
the last term in (1.4) cancel such that the Hamiltonian becomes
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has quantum group symmetry [1].
The structure of the underlying quantum group Uq(sl2) at q root of unity is special,

and the case q = i is one of the simplest and most fascinating example of solvable model
in this class. In this particular case � = 0 and the periodic model is equivalent to free
fermions via the Jordan-Wigner transformation,
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CHAPTER 3. TEMPERLEY-LIEB, VIRASORO, KOO-SALEUR

, ,

Figure 3.1: Three examples of a�ne diagrams for N = 4, with the left and right sides of the
framing rectangle identified. The first diagram represents e4, the second e2e4, and expressing
the last one is left as an exercise.

generators in terms of Temperley-Lieb generators introduced by Koo and Saleur in [17].

3.1 The Temperley-Lieb algebra in the periodic case

3.1.1 The algebra T
a

N
(m)

A basis for a�ne Temperley-Lieb algebra T
a
N is provided by particular diagrams, called a�ne

diagrams, drawn on an annulus with N sites on the inner and N on the outer boundary (we
henceforth assume N even), such that the sites are pairwise connected by simple curves inside
the annulus that do not cross. Some examples of a�ne diagrams are shown in Fig. 3.1; for
convenience we have here cut the annulus and transformed it into a rectangle, which we call
framing, with the sites labeled from left to right and periodic boundary conditions across.

We define a through-line as a simple curve connecting a site on the inner and a site on the
outer boundary of the annulus. Let the number of through-lines be 2j, and call the 2j sites on
the inner boundary attached to a through-line free or non-contractible. The inner (resp. outer)
boundary of the annulus corresponds to the bottom (resp. top) side of the framing rectangle.

The multiplication of two a�ne diagrams, a and b, is defined by joining the inner boundary
of the annulus containing a to the outer boundary of the annulus containing b, and removing
the interior sites. In other words, the product ab is obtained by joining the bottom side of
a’s framing rectangle to the top side of b’s framing rectangle, and removing the corresponding
joined sites. Any closed contractible loop formed in this process is replaced by its corresponding
weight m.

In abstract terms, the algebra Ta
N is generated by the ej’s together with the identity, subject

to the well-known Temperley-Lieb relations [58]

e2j = mej , (3.1.1a)

ejej±1ej = ej , (3.1.1b)

ejek = ekej (for j 6= k, k ± 1) , (3.1.1c)

where j = 1, . . . , N and the indices are interpreted modulo N . In addition, Ta
N contains the

elements u and u�1 generating translations by one site to the right and to the left, respectively.
They obey the following additional defining relations

ueju
�1 = ej+1 , (3.1.2a)

u2eN�1 = e1 · · · eN�1 , (3.1.2b)

and we note that u±N is a central element. The a�ne Temperley–Lieb algebra T
a
N is then

defined abstractly as the algebra generated by the ei and u±1 together with these relations.
We shall parametrize the loop weight as m = q+ q�1, with q the deformation parameter of

the quantum group Uqsl(2). Uqsl(2) that will be introduced in Section 3.4.
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extensive contributions to the ground state. Its value is given by

e1 = sin � I0, (3.2.3)

with I0 being given by the integral

I0 =

Z 1

�1

sinh(⇡ � �)t

sinh(⇡t) cosh(�t)
dt. (3.2.4)

In (3.2.2), the ej can be taken to act in di↵erent representations of the T
a
N(m) algebra.

For dense loop models, the relevant representation is the loop representation, which is simply
the representation in terms of a�ne diagrams introduced in Section 3.1, or equivalently in terms
of the corresponding link states. This loop representation is useful for describing geometrical
problems such as percolation or dense polymers. It is also strictly equivalent to the cluster
representation familiar from the study of the Q-state Potts model with Q = m2 [24]. The
RSOS model representation is introduced in Chapter 4.2, see (4.2.4). Finally for the six-
vertex model, where the degrees of freedom are spins, we must consider the XXZ spin chain
representation. In the rest of this section we will discuss this latter representation in more detail,
and compare it to the loop representation in the case where the modules are indecomposable.
Other representations are possible—such as the one involving alternating 3, 3̄ representations of
sl(2|1) discussed in [62] to study percolation. These will not be discussed in the present thesis.

In the XXZ representation the ej act on CN with

ej = ���
j �

+

j+1
� �+

j �
�
j+1

� cos �

2
�z
j�

z
j+1

� i sin �

2
(�z

j � �z
j+1

) +
cos �

2
, (3.2.5)

where the �j are the usual Pauli matrices, so the Hamiltonian is the familiar XXZ spin chain
Hamiltonian (2.1.8), repeated here for convenience:

H =
�

2⇡ sin �

NX

j=1

⇥
�x
j �

x
j+1

+ �y
j�

y
j+1

+�(�z
j�

z
j+1

� 1) + 2e1
⇤
. (3.2.6)

In the usual basis where [ 1
0
] corresponds to spin up in the z-direction at a given site, the

Temperley-Lieb generator ej acts on spins j, j + 1 (with periodic boundary conditions) as

ej = · · ·⌦ 1⌦

0

BB@

0 0 0 0
0 q�1 �1 0
0 �1 q 0
0 0 0 0

1

CCA⌦ 1⌦ · · · . (3.2.7)

It is also possible to introduce a twist in the spin chain without changing the expression
(3.2.2), by modifying the expression of the Temperley-Lieb generator acting between first and
last spin with a twist parametrized by �. In terms of the Pauli matrices, this twist imposes the
boundary conditions �z

N+1
= �z

1
and �±

N+1
= e⌥i��±

1
. For technical reasons, we will later on

“smear out” the twist by taking �/N for each Temperley Lieb generator:

ej = · · ·⌦ 1⌦

0

BB@

0 0 0 0
0 q�1 �ei�/N 0
0 �e�i�/N q 0
0 0 0 0

1

CCA⌦ 1⌦ · · · . (3.2.8)
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The closed chain can have twisted b.c:

For                             in the large size limit, close to the antiferromagnetic state, the system 
is approximated by a 2d CFT                   lattice regularisation of (non-unitary) CFTs

[Koo, Saleur, 94]

where
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. (1.2)

and we assume periodic boundary conditions, �a
j = �

a
j+N . A convenient parametrisation

for the spin isotropy is

� =
q + q

�1

2
. (1.3)

When q is real � � 1, while for q unimodular |q| = 1, �  1. The Hamiltonian density in
(1.1) is closely related to the generators of a Temperley-Lieb algebra,

ej = �S[j,j+1] �
q� q

�1

4
(�

z
j � �

z
j+1) , (1.4)

where the generator ej is q-anti-symmetriser on the sites j and j+1 satisfying the relations

e
2

j = (q + q
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) ej (1.5)

with matrix

ej =

0

BBBB@

0 0 0 0

0 q
�1 �1 0

0 �1 q 0
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1

CCCCA
. (1.6)

Write down the other relations of TL generators. Upon summation, in the periodic case
the last term in (1.4) cancel such that the Hamiltonian becomes

HXXZ = �
NX

j=1

ej . (1.7)

Since the Temperley-Lieb generators belong to the centraliser of the Uq(sl2) algebra, for the
open case the Hamiltonian

H
open
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N�1X
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S[j,j+1] +
q� q
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4
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z
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z
N ) . (1.8)

has quantum group symmetry [1].
The structure of the underlying quantum group Uq(sl2) at q root of unity is special,

and the case q = i is one of the simplest and most fascinating example of solvable model
in this class. In this particular case � = 0 and the periodic model is equivalent to free
fermions via the Jordan-Wigner transformation,

HXX =

NX
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�
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j �
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⌘
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NX
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The (effective) central charge depends on the twist

e�(u) = e�0(u) + (q � 1) � e�(u) +O(q � 1)2

q⇤ = (t⇤)1/2 = q2

Pjk =
1

2

�
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j �
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HXXX = J
NX

j=1

(Pj,j+1 � 1)

[HXXX, S
a] = 0 , a = x, y, z

[HXXZ, S
z] = 0

Uqsl(2)

Sa =
1

2

NX

j=1

�a

ej = �h[j,j+1] �
q� q�1

4
(�z

j � �z
j+1

) , (106)

Hopen

XXZ
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N�1X

j=1

h[j,j+1] +
q� q�1

4
(�z

1
� �z

N) = �
N�1X

j=1

ej (107)

� =
q + q�1

2
q ! 1 �! � ! 1

H =
X

1i<jN

Vij S[i,j]

KEK�1 = q2E , KFK�1 = q�2F , [E,F ] =
K �K�1

q� q�1
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Kij zi = zj Kij , (108)
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[Klumper, Batchelor, Pearce, 91]
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and we assume periodic boundary conditions, �a
j = �

a
j+N . A convenient parametrisation

for the spin isotropy is

� =
q + q
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2
. (1.3)

When q is real � � 1, while for q unimodular |q| = 1, �  1. The Hamiltonian density in
(1.1) is closely related to the generators of a Temperley-Lieb algebra,
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Write down the other relations of TL generators. Upon summation, in the periodic case
the last term in (1.4) cancel such that the Hamiltonian becomes
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Since the Temperley-Lieb generators belong to the centraliser of the Uq(sl2) algebra, for the
open case the Hamiltonian
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has quantum group symmetry [1].
The structure of the underlying quantum group Uq(sl2) at q root of unity is special,

and the case q = i is one of the simplest and most fascinating example of solvable model
in this class. In this particular case � = 0 and the periodic model is equivalent to free
fermions via the Jordan-Wigner transformation,
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At                  the model can be solved by the Jordan-Wigner transformation:
where the fermionic creation and annihilation operators are defined as

c
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z
l +1)

�
+

j , cj = e
� i⇡
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�
�
j . (1.10)

The Jordan-Wigner transformation is non-local, and the string e
i⇡
2

Pj�1
l=1 (�

z
l +1) is introduced

to correct the commutation relations of the spin operators at different sites j 6= k from
[�

+

j ,�
�
k ] = 0 to {c+j , ck} = 0, so that {c+j , ck} = �jk. The number of fermions at the site

j is given by Nj = c
+

j cj =
1

2
(�

z
l + 1), which means that | # ij is an empty state at site j

and | " ij is a state occupied by one fermion. The spectrum is easily obtained by Fourier
transform,
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e
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a
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so that the Hamiltonian (1.9) becomes
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N
a
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Since
PN

k=1
cos

2⇡k
N = 0 the system has a particle-hole symmetry; if bk = a

+

k and b
+

k = ak,
the new fermionic operators obey canonical anti-commutation relations and

HXX = �2

NX

k=1

cos
2⇡k

N
b
+

k bk . (1.13)

The difference between the open and closed Hamiltonians is already obvious for two sites;
the periodic model has 4 states with energies 0,±1, 0 while the open one has the spectrum
given by 0

3
,�(q + q

�1
) = 0. Given that for � < 1 the open model has an imaginary

boundary field, the resulting Hamiltonian is not hermitian and it can acquire a Jordan cell
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the boundary conditions for the chain influence the boundary conditions for the fermions 
hence the change in the central charge (Dirac versus symplectic fermions in the CFT limit)
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for twisted boundary conditions the chain can be mapped to an alternating gl(1|1)-symmetric 
spin chain via the non-unitary transformation                   

[Gainutdinov, Read, Saleur, 11]the spectrum contains indecomposable representations 

:

The nearest-neighbour  XXZ spin chain 



The isotropic Haldane Shastry Hamiltonian 

Q-DEFORMED HALDANE–SHASTRY, SPIN-RUIJSENAARS AND MACDONALD POLYNOMIALS 3

matrices. The (isotropic) Haldane–Shastry spin chain has Hamiltonian [Hal88Hal88,Sha88Sha88]

(1.1) Hhs = evÊ
ÂHhs , ÂHhs = ≠

Nÿ

i<j

evÊ
zi zj

(zi ≠ zj)2 (1 ≠ Pij) .

The overall sign ensures that (1.11.1) is positive: (≠)Hhs is (anti)ferromagnetic. Let Ê :=
e2fii/N œ C◊ := C \ {0} be the primitive Nth root of unity. Following [Ugl95Ugl95] we write

(1.2) evÊ : zj ‘≠æ Êj = e2fiij/N

for the map evaluating z1, · · · , zN at the corresponding Nth roots of unity. On shell, i.e.
after evaluation, we can think of the zj as the position of site j of the chain, viewed as
being embedded in the unit circle S1 ™ C. We will refer to the zj as coordinates.

The many remarkable properties of this model include a particularly simple spectrum.
The energy and momentum are additive, with a quadratic dispersion relation:

(1.3) XMmaÁhs(n) = 1
2 n (N ≠ n) , phs(n) = 2fi

N
n .

The spectrum is highly degenerate [Hal88Hal88], partially [FGL15FGL15] due to an infinite-
dimensional symmetry algebra present already at for finite size [HHT+92HHT+92, BGHP93BGHP93].
There is one highest-weight eigenvector for each partition ⁄ with ⁄1 Æ N ≠ 2 ¸(⁄) + 1
(see §1.1.31.1.3), with wave function [Hal91bHal91b,BGHP93BGHP93]

(1.4) �(i1, · · · , iM ) = evÊ

MŸ

m<n

(zim ≠ zin)2 P (1/2)
⁄ (zi1 , · · · , ziM ) .

Here P (–)
⁄ is a Jack polynomial with parameter – = g≠1, where g (g ≠1) is the Calogero–

Sutherland coupling (§A.1A.1). The special case P (1/2)
⁄ is a zonal spherical polynomial. cf [Cherednik, Matsuo](To

compare: – = 1 gives Schur and – = 2 zonal polynomials; cf. Figure 44 on p. 2626.)
Refer to q = 1 sects/app. incl §A.2A.2

In this work we extend all of this to the partially isotropic case, building on [BGHP93BGHP93,
Ugl95Ugl95,Lam18Lam18]. do we have new results

for q = 1 too?

1.1.1. Hamiltonians. Fix an anisotropy parameter q œ C◊. The Hamiltonian of the
(chiral) q-deformed Haldane–Shastry spin chain [Ugl95Ugl95] can be expressed in a long-range
pairwise form too [Lam18Lam18]:

(1.5) H = ≠ [N ]
N

Nÿ

i<j

evÊ V (zi, zj) S[i,j] .

Appendix . . . contains a comparison with the conventions from [Ugl95Ugl95, Lam18Lam18]. The
prefactor involves the q-analogue of N œ N,

[N ] := qN ≠ q≠N

q ≠ q≠1 = qN≠1 + qN≠3 + · · · + q3≠N + q1≠N .

Next, the potential in (1.51.5) reads

(1.6) V (zi, zj) = zi zj

(q zi ≠ q≠1zj)(q≠1zi ≠ q zj) .

A geometric way to think about this quantity is shown in Figure 11.
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Recall that a partition ⁄ = (⁄1 Ø ⁄2 Ø · · · Ø 0) is a weakly decreasing sequence of
integers. The length ¸(⁄) of ⁄ is the number of nonzero parts of ⁄. Then2

⁄m = µM≠m+1 ≠ 2 (M ≠ m) , 1 Æ m Æ M = ¸(⁄) = ¸(µ) ,(1.27a)

gives a bijection between MN and the set of partitions with ⁄1 Æ N ≠ 2 ¸(⁄) + 1. If
”M := (M ≠ 1, M ≠ 2, · · · ) denotes the staircase partition of length M ≠ 1 and µ+ is the
partition obtained from µ œ MN by reversal then this relation takes the succinct form

⁄ + 2 ”¸(µ) = µ+ ,(1.27b)
where addition and scalar multiplication are pointwise. See also Figure 33.

µ1 µ2 · · · µM

1 3 · · · 2M≠1 N≠1

⁄̄M ⁄̄M≠1
· · · ⁄̄1

Figure 3. The correspondence (1.271.27) between a motif µ œ MN of length
M := ¸(µ) Ø 1 and a partition with ⁄1 Æ N ≠ 2 M + 1 and ¸(⁄) = M ,
given by ⁄m = ⁄̄m + 1, 1 Æ m Æ M . Here ⁄̄ characterises the extent by
which µ di�ers from the left-most filled motif of length M , as shown.

With this notation in place the (unnormalised) wave function of |µÍ is the following
q-deformation of (1.41.4). The component where all magnons sit on the left remains simple:

(1.28) �µ(1, · · · , M) = ÈÈ1, · · · , M |µÍ = evÊ
Â�⁄(µ)(z1, · · · , zM ) .

Here ⁄(µ) denotes the partition associated to µ via (1.271.27) and Â�⁄ is a symmetric poly-
nomial in the magnon coordinates:

(1.29) Â�⁄(z1, · · · , zM ) :=
A

MŸ

m<n

(q zm ≠ q≠1zn) (q≠1zm ≠ q zn)
B

P ı
⁄ (z1, · · · , zM ) .

Besides the ‘symmetric square’ of the q-Vandermonde product it features the special case
of a Macdonald polynomial (§2.1.22.1.2) with parameters pı = qı = q2. The dependence on
q2 reflects a sort of symmetry of the Hamiltonian under q ‘æ ≠q, see app. In the notation
of Macdonald [Mac95Mac95,Mac98Mac98] the parameters of P ı

⁄ are related as qı = tı – for – = 1/2:
P ı

⁄ is a quantum spherical zonal function. See also Figure 44 on p. 2626. cf [Nou96Nou96], . . . ,

Cher-Matsuo corresp

[Kasatani Pasquier,

Kasatani Takeyama,

Stokman]?

The other components are more involved than in the isotropic case (1.41.4). They are
obtained from (1.291.29) by moving the magnons via q-deformed permutations (the Hecke
algebra, §2.1.12.1.1) before evaluation. Namely, let si be the permutation zi ¡ zi+1 and set in terms of a, b, cf §2.12.1?

(1.30) T pol
i := f≠1

i,i+1(si ≠ gi,i+1) , fi,i+1 := f(zi/zi+1) , gi,i+1 := g(zi/zi+1) ,

2 Note that ⁄ defined in (1.271.27) is the conjugate of the partition associated to µ in [Ugl95Ugl95] follow-
ing [JKK+95aJKK+95a]. See §3.2.33.2.3 for the reason of the conjugation.

M magnon motif

“vacuum” M magnon motif

S[i,j] = Pij

E(µ) =
MX
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"(µm) =
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µm(N � µm)

�̄m = µM�m+1 � 2(M �m)� 1
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1.1.2. Motifs and exact energy spectrum. The spectrum is conveniently described in
terms of the following patterns [HHT+92HHT+92]. For a spin chain with N spin-1/2 sites define

(1.18) MN :=
)
(1 Æ µ1 < · · · < µM Æ N ≠ 1)

-- µm+1 > µm + 1
*

.

An element µ œ MN , called a motif (though ‘N -motif’ would be more precise), thus is a
sequence in {1, · · · , N ≠1} increasing with steps of at least two. Denote the empty motif
by 0. For example, M2 = {0, (1)}, M3 = {0, (1), (2)} and M4 = {0, (1), (2), (3), (1, 3)}.
Let us define the length ¸(µ) of µ to be the number of parts µm. The motif conditio
thatn implies 0 Æ ¸(µ) Æ ÂN/2Ê for any µ œ MN . We will further write

|µ| :=
¸(µ)ÿ

m=1
µm .

Conditioning on whether N ≠ 1 œ µ yields a recursion MN
≥= MN≠1  MN≠2 (disjoint

union), so the number of motifs forms a Fibonacci sequence with o�set one in the system
size: #MN = FibN+1.

As we will demonstrate in §33 (see especially §3.2.33.2.3, 3.33.3, 3.53.5) these motifs label the
eigenspaces of the Hamiltonians,

(1.19) Hsp =
n

µ œ MN

Hsp,µ ,

with (strictly) additive q-momentum and energy eigenvalues

(1.20)

G |Hsp,µ = ei p(µ) , p(µ) := 2fi

N
|µ| mod 2fi ,

H |Hsp,µ = E(µ) =
Mÿ

m=1
Á(µm) ,

H̄ |Hsp,µ = Ē(µ) =
Mÿ

m=1
Á̄(µm) .

Note that the µm can be seen as the ‘Bethe quantum numbers’, or, up to a factor,
quasimomenta pm = 2fiµm/N . The energy is strictly additive: there is no interaction
(bound-state) energy. The physical picture is that of a gas of anyons: free quasiparticles
that interact through their statistics only, just as for the Haldane–Shastry model [Hal91bHal91b,
Hal91aHal91a].

The chiral quasienergy in (1.201.20) is given by Uglov’s dispersion relation [Ugl95Ugl95]

(1.21) XMmaÁ(n) = 1
q ≠ q≠1

3 q≠n

q≠N
[n] ≠ n

N
[N ]

4
.

As q æ 1 we retrieve the quadratic dispersion (1.31.3), as can be seen by writing q = e“

and expanding the part in parentheses to second order in “.
The antichiral dispersion relation di�ers from (1.211.21) by inverting q or, equivalently,

reflecting the motif:

(1.22) XMmaÁ̄(n) = 1
q ≠ q≠1

3 qn

qN
[n] ≠ n

N
[N ]

4
= Á(n)

--
q‘æq≠1 = Á(N ≠ n) .

The q-deformation (1.16) breaks left-right symmetry: the model described by (1.11) is chiral.
One of our new results is a Hamiltonian with the opposite chirality. It also q-deforms (1.1) and
is very similar to (1.11):

Theorem 1.1. The abelian symmetries of the q-deformed Haldane–Shastry spin chain include

Hr = evω H̃r , H̃r =
[N ]

N

N∑

i<j

V (zi, zj) Sr
[i,j] ,(1.20a)

now featuring long-range spin interactions where the interactions take place on the right,

Sr
[i,j] :=

zN

zN

zj+1

zj+1

zj

zj

zj−1

zj−1

zj−1

· · ·

· · ·

· · ·

zi+1

zi+1

zi+1

zi

zi

zi

zi

zi

zi

zi

zi

zi−1

zi−1

z1

z1

· · · · · · .(1.20b)

Indeed, in §3.2.3 we will show that [Hl, Hr] = 0 is true by construction. In particular it makes
sense to define the full Hamiltonian of the q-deformed Haldane–Shastry spin chain as

(1.21) H full :=
1

2
(Hl + Hr) = evω H̃ full , H̃ full =

[N ]

2N

N∑

i<j

V (zi, zj)
(
Sl

[i,j] + Sr
[i,j]

)
.

As we will see in §1.2.3 it has real spectrum also when q ∈ S1.
To get some feeling for the q-deformed Hamiltonians let us investigate the boundary condi-

tions, focussing on Hl for definiteness. The q-deformation affects the periodicity of (1.1). One
might say that the deformed Hamiltonians are really defined on a strip rather than a circle.
The potential (1.13) is still periodic as it depends on the ratio zi/zj , i.e. on the distance i − j
in additive language. However, the long-range interactions (1.16) are certainly not periodic:
compare the highly non-local multispin operator Sl

[1,N ] with any genuine nearest-neighbour in-

teraction Sl
[i,i+1] = esp

i . Unlike for the Heisenberg xxz chain no particle ever really wraps around

the back of the chain. This periodicity breaking is required by the coproduct (§2.2.1) of the
nonabelian symmetries (§1.2.5), cf. [HS96]. As q → 1 the ‘wall’ between sites N and 1 becomes
transparent. For q → ∞ we instead get an open chain, as we will show soon (§1.2.2).

On the other hand the model is formally periodic:

Proposition 1.2. The q-deformed Haldane–Shastry is q-homogeneous: its abelian symmetries
include the (left) q-translation operator [Lam18]

(1.22) G := evω G̃ , G̃ := ŘN−1,N (z1/zN ) · · · Ř12(z1/z2) =

z2

z2 · · ·

· · · zN

zNz1

z1

z1

z1

z1

.

In [Lam18] it was conjectured that Hl is q-homogeneous. The stronger statement from Pro-
position 1.2 will be established in §3.2.3 (see Proposition 3.11). Observe that the Yang–Baxter
equation (§2.2.2) implies GN = 1, so G’s eigenvalues are of the form ei p, with q-momentum
p ∈ (2π/N)ZN quantised as usual for particles on a circle. In particular the (discrete) value
p cannot depend on q, which we can vary as we like. (The dependence on q is hidden in the
meaning of p, as eigenvalue of −i log G.) We will use this to compute p in the crystal limit
q → ∞ at the end of §1.2.2.

7

[Haldane, 88; Shastry, 88]

N spins 1/2 on a circle with periodic boundary conditions

the spectrum is much simpler, in particular there are no bound states; encoded in 
motifs (collections of M integers between 1 and N-1)



The isotropic Haldane Shastry Hamiltonian 

The solution of the Haldane-Shastry model in not obtained by Bethe Ansatz but 
from the link with the spin Calogero-Sutherland model:

is diagonalised on functions completely (anti)symmetric by permutations of spins and 
coordinates

Any vector in the M -particle sector HM can be written via the coordinate basis as

(1.7)
N∑

i1<···<iM

Ψ(i1, · · · , iM ) |i1, · · · , iM 〉〉 , |i1, · · · , iM 〉〉 := σ−
i1

· · · σ−
iM

|↑ · · · ↑〉 .

Thus, |∅〉〉 = |↑ · · · ↑〉 ∈ H0 is the pseudovacuum, |i〉〉 ∈ H1 has a ↓ at site i, and so on. (This
notation is adapted from [HL18].) By Yangian symmetry it suffices to find the vectors in each
M -particle sector that have Yangian highest weight in that they are annihilated by the two spin
raising operators S+ and Q+. Recall that a partition ν = (ν1 ≥ ν2 ≥ · · · ≥ 0) is a weakly
decreasing sequence of integers, with length #(ν) the number of nonzero parts. Partitions with
ν1 ≤ N − 2 #(ν) + 1 are equivalent to motifs (§1.2.4). For each such partition there is one
Yangian highest-weight Hhs-eigenvector. It has M = #(ν) excited spins, with (unnormalised)
wave function [Hal91b,BGHP93]

(1.8)

Ψhs
ν (i1, · · · , iM ) = evω Ψ̃hs

ν (zi1 , · · · , ziM ) ,

Ψ̃hs
ν (z1, · · · , zM ) =

M∏

m<n

(zm − zn)2 P (1/2)
ν (z1, · · · , zM ) .

Here P (α)
ν is a Jack polynomial [Jac70] with parameter α = k−1 related to the coupling k (k −1)

of the (trigonometric quantum) Calogero–Sutherland model [Sut71, Sut72]. These symmetric
polynomials are studied extensively in the literature, see e.g. [Sta89,Mac95], play an important
role in [Mat92], and appear for the fractional quantum Hall effect [KP07, BH08]. If α = 1/2,
as in (1.8), one gets zonal spherical polynomials, see e.g. §VII.6 in [Mac95]. (For comparison:
α = 1 gives Schur and α = 2 zonal polynomials; cf. Figure 5 on p. 33.) Note that #(ν) = M
means that νM ≥ 1 and νM+1 = 0, so ν = ν̄ + (1M ) for some partition ν̄ with #(ν̄) ≤ M . Jack
polynomials have the property

(1.9) P (α)
ν (z1, · · · , zM ) = z1 · · · zM P (α)

ν̄ (z1, · · · , zM ) , ν = ν̄ + (1M ) .

In the literature on the Haldane–Shastry model this relation is often used to extract an explicit
centre-of-mass factor z1 · · · zM and end up with a polynomial associated to ν̄ as on the right-
hand side of (1.9). This factor (or, equivalently, the condition #(ν) = M) ensures that the
resulting eigenvector has Yangian highest-weight on shell [BPS95].

The many special properties of the Haldane–Shastry spin chain naturally arise [BGHP93]
from a connection with a dynamical model: the spin-version of the Calogero–Sutherland model,
with N spin-1/2 particles moving on a circle while interacting in pairs, governed by the Hamilto-
nian [HH92,MP93,HW93] (see also [Che94b,Res17])

(1.10)
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N∑
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(
zi ∂zi

)2
+

N∑

i<j

−zi zj

(zi − zj)2
k (k − Pij)

= −
1

2

N∑

i=1

∂2
xi

+
N∑

i<j

k (k − Pij)

4 sin2[(xi − xj)/2]
, zj = ei xj .

In the second line we switched to additive notation. This model already has Yangian sym-
metry [BGHP93], and was studied in [Ugl96, TU97, Ugl98]. As foreseen in [Sha88] the spin
chain emerges through freezing [Pol93, SS93, BGHP93, TH95]: if one carefully lets k → ∞ the
kinetic energy is negligible compared to the potential energy and the particles ‘freeze’ at their
equally spaced (static) classical equilibrium positions evω zj to yield (1.1).

1.2. q-deformed Haldane–Shastry. Our goal is to extend all of the preceding to the partially
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too: the q-deformation does not change the representation-theoretic content when q is real
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partially (anti)symmetric in two complementary groups of variables 

[Polychronakos 92, Bernard, Gaudin, Haldane, Pasquier, 93]

Dynamical model:

eigenfunctions of the CS model:  partially symmetrised, non-symmetric Jack 
polynomials

appropriate generalisation of (2.2) is [HH92,MP93,HW93]

ÂHcs
± = ≠

1
2

Nÿ

j=1
ˆ2

xj
+ —

Nÿ

i<j

— û Pij

4 sin2[(xi ≠ xj)/2]

= 1
2

Nÿ

j=1
(zj ˆzj )2 + —

Nÿ

i<j

zi zj

zij zji
(— û Pij) .

(2.3)

This spin-Calogero–Sutherland model is quantum integrable/exactly solvable: the Hamilto-
nian (2.3)

• belongs a hierarchy of commuting Hamiltonians [BGHP93,Che94,Res17], each of which

• has enhanced (Yangian) slr symmetry for r > 1 [HHT+92,BGHP93], and

• admits an explicit description of its (Yangian) highest-weight vectors in terms of partially
symmetrised nonsymmetric Jack polynomials, cf. [TU97,Ugl98].

We refer to the first property as the abelian symmetries and the second as the nonabelian
symmetries. In this section we review these facts for the di�erent versions of the Calogero–
Sutherland model, aiming for the case of fermions with spin.

2.1 Formalism: nonsymmetric theory

We start with N distinguishable particles. The algebraic framework underlying Calogero–
Sutherland models is centred around the (Cherednik–)Dunkl operators [Dun89,Che91]

dj ©
1
—

zj ˆzj ≠

j≠1ÿ

i=1

zj

zij
(1 ≠ sij) +

Nÿ

i=j+1

zi

zji
(1 ≠ sji) + 1

2 (N ≠ 2j + 1)

= 1
—

zj ˆzj ≠
1
2

Nÿ

i( ”=j)

zi + zj

zi ≠ zj
(1 ≠ sij) ≠

1
2

ÿ

i(<j)
sij + 1

2

Nÿ

i(>j)
sji ,

(2.4)

where — Ø 0 is a parameter, and sij denotes the coordinate permutation zi ¡ zj . These operat-
ors act on the space C[z, z≠1] of Laurent polynomials in z1, . . . , zN , and obey the commutation
relations

di dj = dj di , di si,i+1 = si,i+1 di+1 + 1 , di sjk = sjk di (i ”= j, k) , (2.5)

which are the relations of the degenerate a�ne Hecke algebra [Dri86, Lus89]. Note that shifts
of all dj by a common constant, which do not a�ect (2.5), occur in the literature. In [BGHP93]
the dj were called ‘gauge transformed’ Dunkl operators. See also the closely related ‘exchange
operator formalism’ of Polychronakos [Pol99].

Dunkl operators are triangular on monomials, given a suitable (partial) ordering called the
dominance order.2 Moreover, Dunkl operators are ‘separating’ in the sense that their joint

2 Namely, for ⁄ œ ZN denote the corresponding partition by ⁄+, i.e. ⁄+
i Ø ⁄+

i+1 for all i. For partitions,

⁄ Ø ‹ iff ⁄1 + · · · + ⁄j Ø ‹1 + · · · + ‹j for all 1 Æ j Æ N , (2.6a)
and ⁄ > ‹ means ⁄ Ø ‹ but ⁄ ”= ‹. This is refined to compositions as [BGHP93,Opd95]

⁄ º ‹ iff either ⁄+ > ‹+ or ⁄+ = ‹+ and ⁄ > ‹ . (2.6b)

Thus, ⁄+ is the highest among all permutations of ⁄. For example, (3, 0, 0) º (0, 3, 0) º (0, 0, 3) º (2, 1, 0) º
[(2, 0, 1) and (1, 2, 0)] º [(1, 0, 2) and (0, 2, 1)] º (0, 1, 2) º (1, 1, 1), while (2, 0, 1) and (1, 2, 0) are incomparable,
as are (1, 0, 2) and (0, 2, 1). The monomial z⁄1

1 · · · z⁄N
N is lower than z‹1

1 · · · z‹N
N if ‹ º ⁄. Incomparability is a

feature rather than a bug, restricting which (lower) monomials appear in (2.7).
Warning: in the mathematical literature the set of all permutations of ⁄ is often sorted in the reverse order.
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The isotropic Haldane Shastry Hamiltonian 

in principle, all the eigenfunctions of Haldane-Shastry should be obtainable from those of the 
su(2) CS model by freezing i.e. by sending

Q-DEFORMED HALDANE–SHASTRY, SPIN-RUIJSENAARS AND MACDONALD POLYNOMIALS 3

matrices. The (isotropic) Haldane–Shastry spin chain has Hamiltonian [Hal88Hal88,Sha88Sha88]

(1.1) Hhs = evÊ
ÂHhs , ÂHhs = ≠

Nÿ

i<j

evÊ
zi zj

(zi ≠ zj)2 (1 ≠ Pij) .

The overall sign ensures that (1.11.1) is positive: (≠)Hhs is (anti)ferromagnetic. Let Ê :=
e2fii/N œ C◊ := C \ {0} be the primitive Nth root of unity. Following [Ugl95Ugl95] we write

(1.2) evÊ : zj ‘≠æ Êj = e2fiij/N

for the map evaluating z1, · · · , zN at the corresponding Nth roots of unity. On shell, i.e.
after evaluation, we can think of the zj as the position of site j of the chain, viewed as
being embedded in the unit circle S1 ™ C. We will refer to the zj as coordinates.

The many remarkable properties of this model include a particularly simple spectrum.
The energy and momentum are additive, with a quadratic dispersion relation:

(1.3) XMmaÁhs(n) = 1
2 n (N ≠ n) , phs(n) = 2fi

N
n .

The spectrum is highly degenerate [Hal88Hal88], partially [FGL15FGL15] due to an infinite-
dimensional symmetry algebra present already at for finite size [HHT+92HHT+92, BGHP93BGHP93].
There is one highest-weight eigenvector for each partition ⁄ with ⁄1 Æ N ≠ 2 ¸(⁄) + 1
(see §1.1.31.1.3), with wave function [Hal91bHal91b,BGHP93BGHP93]

(1.4) �(i1, · · · , iM ) = evÊ

MŸ

m<n

(zim ≠ zin)2 P (1/2)
⁄ (zi1 , · · · , ziM ) .

Here P (–)
⁄ is a Jack polynomial with parameter – = g≠1, where g (g ≠1) is the Calogero–

Sutherland coupling (§A.1A.1). The special case P (1/2)
⁄ is a zonal spherical polynomial. cf [Cherednik, Matsuo](To

compare: – = 1 gives Schur and – = 2 zonal polynomials; cf. Figure 44 on p. 2626.)
Refer to q = 1 sects/app. incl §A.2A.2

In this work we extend all of this to the partially isotropic case, building on [BGHP93BGHP93,
Ugl95Ugl95,Lam18Lam18]. do we have new results

for q = 1 too?

1.1.1. Hamiltonians. Fix an anisotropy parameter q œ C◊. The Hamiltonian of the
(chiral) q-deformed Haldane–Shastry spin chain [Ugl95Ugl95] can be expressed in a long-range
pairwise form too [Lam18Lam18]:

(1.5) H = ≠ [N ]
N

Nÿ

i<j

evÊ V (zi, zj) S[i,j] .

Appendix . . . contains a comparison with the conventions from [Ugl95Ugl95, Lam18Lam18]. The
prefactor involves the q-analogue of N œ N,

[N ] := qN ≠ q≠N

q ≠ q≠1 = qN≠1 + qN≠3 + · · · + q3≠N + q1≠N .

Next, the potential in (1.51.5) reads

(1.6) V (zi, zj) = zi zj

(q zi ≠ q≠1zj)(q≠1zi ≠ q zj) .

A geometric way to think about this quantity is shown in Figure 11.
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symmetric Jack polynomials labelled by partitions
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[BGHP, 93]
[Bernard, Pasquier, D.S., 93]

this fixes the positions of the particles in the minima of the potential thus creating  
the regular periodic lattice

For the states which are Yangian highest weights we have

[Lamers, D.S, 22]



The q-Haldane-Shastry Hamiltonian (Uglov-Lamers) 

Q-DEFORMED HALDANE–SHASTRY, SPIN-RUIJSENAARS AND MACDONALD POLYNOMIALS 3

matrices. The (isotropic) Haldane–Shastry spin chain has Hamiltonian [Hal88Hal88,Sha88Sha88]

(1.1) Hhs = evÊ
ÂHhs , ÂHhs = ≠

Nÿ

i<j

evÊ
zi zj

(zi ≠ zj)2 (1 ≠ Pij) .

The overall sign ensures that (1.11.1) is positive: (≠)Hhs is (anti)ferromagnetic. Let Ê :=
e2fii/N œ C◊ := C \ {0} be the primitive Nth root of unity. Following [Ugl95Ugl95] we write

(1.2) evÊ : zj ‘≠æ Êj = e2fiij/N

for the map evaluating z1, · · · , zN at the corresponding Nth roots of unity. On shell, i.e.
after evaluation, we can think of the zj as the position of site j of the chain, viewed as
being embedded in the unit circle S1 ™ C. We will refer to the zj as coordinates.

The many remarkable properties of this model include a particularly simple spectrum.
The energy and momentum are additive, with a quadratic dispersion relation:

(1.3) XMmaÁhs(n) = 1
2 n (N ≠ n) , phs(n) = 2fi

N
n .

The spectrum is highly degenerate [Hal88Hal88], partially [FGL15FGL15] due to an infinite-
dimensional symmetry algebra present already at for finite size [HHT+92HHT+92, BGHP93BGHP93].
There is one highest-weight eigenvector for each partition ⁄ with ⁄1 Æ N ≠ 2 ¸(⁄) + 1
(see §1.1.31.1.3), with wave function [Hal91bHal91b,BGHP93BGHP93]

(1.4) �(i1, · · · , iM ) = evÊ

MŸ

m<n

(zim ≠ zin)2 P (1/2)
⁄ (zi1 , · · · , ziM ) .

Here P (–)
⁄ is a Jack polynomial with parameter – = g≠1, where g (g ≠1) is the Calogero–

Sutherland coupling (§A.1A.1). The special case P (1/2)
⁄ is a zonal spherical polynomial. cf [Cherednik, Matsuo](To

compare: – = 1 gives Schur and – = 2 zonal polynomials; cf. Figure 44 on p. 2626.)
Refer to q = 1 sects/app. incl §A.2A.2

In this work we extend all of this to the partially isotropic case, building on [BGHP93BGHP93,
Ugl95Ugl95,Lam18Lam18]. do we have new results

for q = 1 too?

1.1.1. Hamiltonians. Fix an anisotropy parameter q œ C◊. The Hamiltonian of the
(chiral) q-deformed Haldane–Shastry spin chain [Ugl95Ugl95] can be expressed in a long-range
pairwise form too [Lam18Lam18]:

(1.5) H = ≠ [N ]
N

Nÿ

i<j

evÊ V (zi, zj) S[i,j] .

Appendix . . . contains a comparison with the conventions from [Ugl95Ugl95, Lam18Lam18]. The
prefactor involves the q-analogue of N œ N,

[N ] := qN ≠ q≠N

q ≠ q≠1 = qN≠1 + qN≠3 + · · · + q3≠N + q1≠N .

Next, the potential in (1.51.5) reads

(1.6) V (zi, zj) = zi zj

(q zi ≠ q≠1zj)(q≠1zi ≠ q zj) .

A geometric way to think about this quantity is shown in Figure 11.

[Bernard, Gaudin, Haldane, Pasquier, 93; Uglov 95; Lamers 18]

The XXZ model can also be deformed to accommodate for long-range interaction,  
at the price of introducing multi-spin interaction
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zi

q zi

q≠1zi

zjq zj

q≠1zj

d≠

d+
zi

q zi

q≠1zi

zj

q zj

q≠1zj

d≠ d+

Figure 1. The potential (1.61.6) is a point splitting of the inverse square
in (1.11.1). Consider a little ‘dipole’ at each site, with length set by q≠q≠1.
Then evÊ V (zi, zj) = 1/d+ d≠, where d± are illustrated for q œ iR>1 (left)
and q œ R>1 (right). At q = 1 both d± reduce to the chord distance.

Finally, the operators S[i,j] in (1.51.5) deform the long-range exchange interactions of
(1.11.1). The deformation is accomplished via the spin-1/2 xxz (six-vertex) R-matrix

(1.7) Ř(u) :=

Q

cca

1 0 0 0
0 u g(u) f(u) 0
0 f(u) g(u) 0
0 0 0 1

R

ddb , f(u) := u ≠ 1
q u ≠ q≠1 , g(u) := q ≠ q≠1

q u ≠ q≠1 .

Here the 4◊4 matrix is with respect to the standard basis |øøÍ, |ø¿Í, |¿øÍ, |¿¿Í of C2 ¢C2.
The functions f and g can be recognised as the ratios b/a and c/a, respectively, of the
six-vertex model’s local weights. The properties of (1.71.7) will be reviewed in §2.2.22.2.2.

Note that the isotropic interactions can be decomposed into nearest-neighbour steps
consisting of transport, interaction, and transport back:

(1.8) 1 ≠ Pij = Pj≠1,j · · · Pi+1,i+2 (1 ≠ Pi,i+1) Pi+1,i+2 · · · Pj≠1,j .

The appropriate q-deformation has the same structure, cf. [HS96HS96]. It is perhaps most
clearly defined using graphical notation:

(1.9) S[i,j] :=

zN

zN

zj+1

zj+1

zj

zj

zj

zj

zj

zj

zj

zj

zj≠1

zj≠1

zj≠1

· · ·

· · ·

· · ·

zi+1

zi+1

zi+1

zi

zi

zi≠1

zi≠1

z1

z1

· · · · · · , i < j .

The little arrows at the top indicate that the diagrams are read from bottom to top (time
goes up). The coordinates, here in the role of inhomogeneity parameters, follow the lines
as indicated. The nearest-neighbour transport is accounted for by the R-matrix,

(1.10)
v

v

u

u

:= Ř(u/v) ,

The appropriate q-deformation has the same structure, cf. [HS96]. It is perhaps most clearly
defined using graphical notation:

(1.16) Sl
[i,j] :=

zN

zN

zj+1

zj+1

zj

zj

zj

zj

zj

zj

zj

zj

zj−1

zj−1

zj−1

· · ·

· · ·

· · ·

zi+1

zi+1

zi+1

zi

zi

zi−1

zi−1

z1

z1

· · · · · · .

The little arrows at the top indicate that the diagrams are read from bottom to top (time
goes up). The coordinates, here in the role of inhomogeneity parameters, follow the lines as
indicated. The nearest-neighbour transport is accounted for by the R-matrix,

(1.17)

v

v

u

u

:= Ř(u/v) ,

while the nearest-neighbour exchange is deformed to the Temperley–Lieb generator 2

(1.18)

u

u

v

v

:= esp = −(q − q−1) Ř′(1) =





0 0 0 0
0 q−1 −1 0
0 −1 q 0
0 0 0 0



 .

This q-antisymmetriser (up to normalisation) is the local Hamiltonian of the quantum-sl2 in-
variant Heisenberg spin chain [PS90], see §2.2.3.

An example of the long-range spin interactions (1.16) is

(1.19)

Sl
[1,5] = Ř45(z5/z4) Ř34(z5/z3) Ř23(z5/z2)

× −(q − q−1) Ř′
12(1)

× Ř23(z2/z5) Ř34(z3/z5) Ř45(z4/z5) .

We stress that in the graphical notation the parameters follow the lines, but (unlike if one would
draw R = P Ř or Ř P ) the vector spaces do not, cf. the subscripts in (1.19). The notation ‘[i, j]’
as an interval in (1.16), which is borrowed from [HS96], reflects the fact that the intermediate
spins are affected by the transport via the R-matrix: the model involves multi-spin interactions
when q #= ±1. As a result the direct computation of the action of Hl on any vector is quite
complicated even for a single excited spin.

Remarks. i. If q ∈ R× the hermiticity of (1.18) is inherited by Hl [Lam18]. See the Corollary
on p. 11 for q ∈ S1. ii. The structure of Hl, with its multi-spin interactions, might be somewhat
involved, yet is precisely such that the key properties of (1.1) generalise to the q-case:

• it comes with a hierarchy of abelian symmetries (see below, §1.3.2 and Table 4 on p. 25),
• it has a large number of nonabelian symmetries (§1.2.5) and
• it admits an exact description of the exact energy spectrum (§1.2.3),
• including a closed-form expression for the (l-)highest weight vectors (§1.2.4).

iii. We’ll derive the formula for Hl in §3.2.1, as we will preview in §1.3.2. iv. Hl has a stochastic
version too: see §C.1. v. The Hamiltonian depends mildly on the sign of q: the eigenvalues of
Hl|q$→−q equal those of (−1)N Hl. We will prove this in §C.1, see (C.8).

2 Unlike the usual graphical notation for esp
i this does not represent the Temperley–Lieb relations (§2.2.1),

but it correctly accounts for the flow of inhomogeneity (spectral) parameters along the lines.
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0 0 0 0
0 q−1 −1 0
0 −1 q 0
0 0 0 0



 .

This q-antisymmetriser (up to normalisation) is the local Hamiltonian of the quantum-sl2 in-
variant Heisenberg spin chain [PS90], see §2.2.3.

An example of the long-range spin interactions (1.16) is

(1.19)

Sl
[1,5] = Ř45(z5/z4) Ř34(z5/z3) Ř23(z5/z2)
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We stress that in the graphical notation the parameters follow the lines, but (unlike if one would
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3 The long range spin chain

An integrable long-range version of the XXZ spin chain was proposed in [3] and studied
further in [4–6]. Its Hamiltonian can be written as

H
L

qHS =
[N ]

N

X

1i<jN
Vij S

L

[i,j] (3.1)

where the translationally invariant potential Vij is given by

Vij =
zizj

(qzi � q�1zj)(qzj � q�1zi)
, zj = !

j
, [N ] =

q
N � q

�N

q� q�1
, (3.2)

and

S
L

[i,j] =

  Y
i<k<j

Řk,k+1(zj/zk)

!
ei

 !Y
i<k<j

Řk,k+1(zk/zj)

!
, i < j , (3.3)

with

Řk,k+1(u) = 1� f(u) ek , f(u) =
u� 1

qu� q�1
. (3.4)

The relation

f(u) + f(u
�1

) = (q + q
�1

)f(u)f(u
�1

) (3.5)

together with the Temperley-Lieb relation (1.5) insures that Řk,k+1(u) Řk,k+1(u
�1

) = 1.
The interaction (3.3) is not symmetric by parity, i.e. by sending i ! N � i, instead

there exists another Hamiltonian

H
R

qHS =
[N ]

N

X

1i<jN
Vij S

R

[i,j] (3.6)

with

S
R

[i,j] =

 !Y
ik<j�1

Řk,k+1(zk/zi)

!
ej�1

  Y
ik<j�1

Řk,k+1(zi/zk)

!
, i < j , (3.7)

such that the two Hamiltonians commute,

[H
L

qHS,H
R

qHS] = 0 , (3.8)

and a parity invariant Hamiltonian can be defined by the half-sum of the two operators,

HqHS =
1

2

�
H

L

qHS +H
R

qHS

�
. (3.9)
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matrices. The (isotropic) Haldane–Shastry spin chain has Hamiltonian [Hal88Hal88,Sha88Sha88]

(1.1) Hhs = evÊ
ÂHhs , ÂHhs = ≠

Nÿ

i<j

evÊ
zi zj

(zi ≠ zj)2 (1 ≠ Pij) .

The overall sign ensures that (1.11.1) is positive: (≠)Hhs is (anti)ferromagnetic. Let Ê :=
e2fii/N œ C◊ := C \ {0} be the primitive Nth root of unity. Following [Ugl95Ugl95] we write

(1.2) evÊ : zj ‘≠æ Êj = e2fiij/N

for the map evaluating z1, · · · , zN at the corresponding Nth roots of unity. On shell, i.e.
after evaluation, we can think of the zj as the position of site j of the chain, viewed as
being embedded in the unit circle S1 ™ C. We will refer to the zj as coordinates.

The many remarkable properties of this model include a particularly simple spectrum.
The energy and momentum are additive, with a quadratic dispersion relation:

(1.3) XMmaÁhs(n) = 1
2 n (N ≠ n) , phs(n) = 2fi

N
n .

The spectrum is highly degenerate [Hal88Hal88], partially [FGL15FGL15] due to an infinite-
dimensional symmetry algebra present already at for finite size [HHT+92HHT+92, BGHP93BGHP93].
There is one highest-weight eigenvector for each partition ⁄ with ⁄1 Æ N ≠ 2 ¸(⁄) + 1
(see §1.1.31.1.3), with wave function [Hal91bHal91b,BGHP93BGHP93]
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MŸ

m<n
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⁄ (zi1 , · · · , ziM ) .

Here P (–)
⁄ is a Jack polynomial with parameter – = g≠1, where g (g ≠1) is the Calogero–

Sutherland coupling (§A.1A.1). The special case P (1/2)
⁄ is a zonal spherical polynomial. cf [Cherednik, Matsuo](To

compare: – = 1 gives Schur and – = 2 zonal polynomials; cf. Figure 44 on p. 2626.)
Refer to q = 1 sects/app. incl §A.2A.2
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N

X
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L

[i,j]
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N

X

i<j

V (zi, zj) S
R

[i,j]

HHS = �
X

i 6=j

V (zi, zj) Pij

V (zi, zj) =
zizj

(zi � zj)2
=

1

sin2 ⇡(i� j)/N

S[i,j] = Pij

E(µ)� E0 =
MX

m=1

"(µm) =
MX

m=1

µm(N � µm)

�̄m = µM�m+1 � 2(M �m)� 1

[H, H̄] = 0
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qdeta L
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u� zi
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qdeta La(u; z) = tN/2
NY

i=1

u� zi
tu� zi
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i=1

ker(T sp
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i )

Dr = er(Y)

eDr = er(eY)

� eD1 ⇠ H = � [N ]

N

X

i<j

V (zi, zj) S[i,j]
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The Uglov-Lamers Hamiltonian 

The q-deformation (1.16) breaks left-right symmetry: the model described by (1.11) is chiral.
One of our new results is a Hamiltonian with the opposite chirality. It also q-deforms (1.1) and
is very similar to (1.11):

Theorem 1.1. The abelian symmetries of the q-deformed Haldane–Shastry spin chain include

Hr = evω H̃r , H̃r =
[N ]

N

N∑

i<j

V (zi, zj) Sr
[i,j] ,(1.20a)

now featuring long-range spin interactions where the interactions take place on the right,

Sr
[i,j] :=

zN

zN

zj+1

zj+1

zj

zj

zj−1

zj−1

zj−1

· · ·

· · ·

· · ·

zi+1

zi+1

zi+1

zi

zi

zi

zi

zi

zi

zi

zi

zi−1

zi−1

z1

z1

· · · · · · .(1.20b)

Indeed, in §3.2.3 we will show that [Hl, Hr] = 0 is true by construction. In particular it makes
sense to define the full Hamiltonian of the q-deformed Haldane–Shastry spin chain as

(1.21) H full :=
1

2
(Hl + Hr) = evω H̃ full , H̃ full =

[N ]

2N

N∑

i<j

V (zi, zj)
(
Sl

[i,j] + Sr
[i,j]

)
.

As we will see in §1.2.3 it has real spectrum also when q ∈ S1.
To get some feeling for the q-deformed Hamiltonians let us investigate the boundary condi-

tions, focussing on Hl for definiteness. The q-deformation affects the periodicity of (1.1). One
might say that the deformed Hamiltonians are really defined on a strip rather than a circle.
The potential (1.13) is still periodic as it depends on the ratio zi/zj , i.e. on the distance i − j
in additive language. However, the long-range interactions (1.16) are certainly not periodic:
compare the highly non-local multispin operator Sl

[1,N ] with any genuine nearest-neighbour in-

teraction Sl
[i,i+1] = esp

i . Unlike for the Heisenberg xxz chain no particle ever really wraps around

the back of the chain. This periodicity breaking is required by the coproduct (§2.2.1) of the
nonabelian symmetries (§1.2.5), cf. [HS96]. As q → 1 the ‘wall’ between sites N and 1 becomes
transparent. For q → ∞ we instead get an open chain, as we will show soon (§1.2.2).

On the other hand the model is formally periodic:

Proposition 1.2. The q-deformed Haldane–Shastry is q-homogeneous: its abelian symmetries
include the (left) q-translation operator [Lam18]

(1.22) G := evω G̃ , G̃ := ŘN−1,N (z1/zN ) · · · Ř12(z1/z2) =

z2

z2 · · ·

· · · zN

zNz1

z1

z1

z1

z1

.

In [Lam18] it was conjectured that Hl is q-homogeneous. The stronger statement from Pro-
position 1.2 will be established in §3.2.3 (see Proposition 3.11). Observe that the Yang–Baxter
equation (§2.2.2) implies GN = 1, so G’s eigenvalues are of the form ei p, with q-momentum
p ∈ (2π/N)ZN quantised as usual for particles on a circle. In particular the (discrete) value
p cannot depend on q, which we can vary as we like. (The dependence on q is hidden in the
meaning of p, as eigenvalue of −i log G.) We will use this to compute p in the crystal limit
q → ∞ at the end of §1.2.2.
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There exists another Hamiltonian with the opposite “chirality”

Both Hamiltonians can be diagonalised simultaneously and the spectrum can be  
written in terms of motifs, with eigenvalues

The spectrum of the two left and right Hamiltonian is given in terms of a collection of
M = bN/2c integers µ1, . . . , µM with N � 1 � µ1 > . . . > µM � 1 and two consecutive
such integers are separated by a distance of at least two units, µk+1 > µk + 1,

"
L,R

(µ) =

MX

m=1

✏
L,R

(µm) (3.10)

with

"
L
(n) =

1

q� q�1

⇣
q
N�n

[n]� n

N
[N ]

⌘
, "

R
(n) =

�1

q� q�1

⇣
q
n�N

[n]� n

N
[N ]

⌘
(3.11)

such that the combined Hamiltonian has a real spectrum when q is real or |q| = 1 ,

"(n) =
1

2

�
"
L
(n) + "

R
(n)

�
=

1

2
[n][N � n] . (3.12)

3.1 The long range spin chain at q = i

The spectrum of the long range chain simplifies dramatically when q = i, given that in this
case
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The eigenvectors of the Uglov-Lamers model 

There exists an explicit expression of the (equivalent of) highest weight vectors 

one for each multiplet of the quantum affine algebra (for each motif)
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For N = 4, for example, Q0(u) = (1 ≠ q3u)(1 ≠ qu)(1 ≠ q≠1u)(1 ≠ q≠3u) yields a string
of length four, both Q(1)(u) = (1 ≠ q≠1u)(1 ≠ q≠3u) and Q(3)(u) = (1 ≠ q3u)(1 ≠ qu)
one string of length two, Q(2)(u) = (1 ≠ q3u)(1 ≠ q≠3u) two strings of length one, and
Q(1,3)(u) = 1 an empty string (of length zero).

The Drinfel’d polynomial characterises the U Õ
q( „gl2)-structure of Hsp,µ, also comment iiii

below. In particular it describes the structure as a module for Uq(sl2) µ U Õ
q( „gl2): each

string of length l among the zeroes of Qµ corresponds to a factor of dimension l +1 (spin
l/2), cf. the graphical rule from [Lam18Lam18]. It follows that

(1.25) XMmadim(Hsp,µ) =

Y
_]

_[

N + 1 if µ = 0 ,

µ1 (N ≠ µM )
M≠1Ÿ

m=1
(µm+1 ≠ µm ≠ 1) if M Ø 1 .

In §3.33.3 we’ll give another proof of (1.251.25) by studying the chrystal limit q æ Œ.
It might be instructive to demonstrate here already that (1.251.25) implies completeness,

i.e. that the dimensions on both sides of (1.191.19) match:

2N =
ÂN/2Êÿ

M=0

ÿ

µœMN
¸(µ)=M

MŸ

m=0
(µm+1 ≠ µm ≠ 1) , where

µM+1 := N + 1 ,

µ0 := ≠1 .

Proof. The left-hand side is the cardinality of the set {0, 1}N of strings with N bits.
On the right-hand side the counting goes as follows. Let M denote the number of
occurrences of the pattern . . . 01 . . . in a string; then 0 Æ M Æ ÂN/2Ê. Further let µm

be the position of the ‘0’ in that pattern, so that µ = (µ1, · · · , µM ) œ MN . Before
the first 01 there is a substring with µ1 ≠ 1 = µ1 ≠ µ0 ≠ 2 bits; in between any two
consecutive 01s a substring with µm+1 ≠ µm ≠ 2 bits; and after the last 01 a substring
of length N ≠ µM ≠ 1 = µM+1 ≠ µM ≠ 2. Each of these substrings must be of the form
1 . . . 10 . . . 0, for which there are µm+1 ≠µm ≠1 possibilities (including only 1s or 0s). ⇤

1.1.3. Highest-weight vectors. Everything so far readily extends to higher rank, as was
conjectured in [Lam18Lam18] and will be shown in §3.43.4. The following, however, is for rank
one only, with spin-1/2 sites.

In §3.53.5 we will obtain an exact expression in closed form for the U Õ
q( „gl2) highest-weight

H-eigenvector |µÍ œ Hsp,µ. Set M = ¸(µ). Like any vector in Hsp
M it can be written in

terms of the coordinate basis,

(1.26) |µÍ =
Nÿ

i1<···<iM

�µ(i1, · · · , iM ) |i1, · · · , iM ÍÍ , |i1, · · · , iM ÍÍ := ‡≠

i1 · · · ‡≠

iM
|ø · · · øÍ .

Thus, |?ÍÍ = |ø · · · øÍ œ Hsp
0 is our notation for the pseudovacuum, |iÍÍ œ Hsp

1 has a ¿ at
site i, and so on. Like (1.41.4) the q-deformed wave function �µ(i1, · · · , iM ) = ÈÈi1, · · · , iM |µÍ
is more conveniently described by passing from motifs to partitions.the component where all the reversed spins are at the left is particularly simple
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Recall that a partition ⁄ = (⁄1 Ø ⁄2 Ø · · · Ø 0) is a weakly decreasing sequence of
integers. The length ¸(⁄) of ⁄ is the number of nonzero parts of ⁄. Then2

⁄m = µM≠m+1 ≠ 2 (M ≠ m) , 1 Æ m Æ M = ¸(⁄) = ¸(µ) ,(1.27a)

gives a bijection between MN and the set of partitions with ⁄1 Æ N ≠ 2 ¸(⁄) + 1. If
”M := (M ≠ 1, M ≠ 2, · · · ) denotes the staircase partition of length M ≠ 1 and µ+ is the
partition obtained from µ œ MN by reversal then this relation takes the succinct form

⁄ + 2 ”¸(µ) = µ+ ,(1.27b)
where addition and scalar multiplication are pointwise. See also Figure 33.

µ1 µ2 · · · µM

1 3 · · · 2M≠1 N≠1

⁄̄M ⁄̄M≠1
· · · ⁄̄1

Figure 3. The correspondence (1.271.27) between a motif µ œ MN of length
M := ¸(µ) Ø 1 and a partition with ⁄1 Æ N ≠ 2 M + 1 and ¸(⁄) = M ,
given by ⁄m = ⁄̄m + 1, 1 Æ m Æ M . Here ⁄̄ characterises the extent by
which µ di�ers from the left-most filled motif of length M , as shown.

With this notation in place the (unnormalised) wave function of |µÍ is the following
q-deformation of (1.41.4). The component where all magnons sit on the left remains simple:

(1.28) �µ(1, · · · , M) = ÈÈ1, · · · , M |µÍ = evÊ
Â�⁄(µ)(z1, · · · , zM ) .

Here ⁄(µ) denotes the partition associated to µ via (1.271.27) and Â�⁄ is a symmetric poly-
nomial in the magnon coordinates:

(1.29) Â�⁄(z1, · · · , zM ) :=
A

MŸ

m<n

(q zm ≠ q≠1zn) (q≠1zm ≠ q zn)
B

P ı
⁄ (z1, · · · , zM ) .

Besides the ‘symmetric square’ of the q-Vandermonde product it features the special case
of a Macdonald polynomial (§2.1.22.1.2) with parameters pı = qı = q2. The dependence on
q2 reflects a sort of symmetry of the Hamiltonian under q ‘æ ≠q, see app. In the notation
of Macdonald [Mac95Mac95,Mac98Mac98] the parameters of P ı

⁄ are related as qı = tı – for – = 1/2:
P ı

⁄ is a quantum spherical zonal function. See also Figure 44 on p. 2626. cf [Nou96Nou96], . . . ,

Cher-Matsuo corresp

[Kasatani Pasquier,

Kasatani Takeyama,

Stokman]?

The other components are more involved than in the isotropic case (1.41.4). They are
obtained from (1.291.29) by moving the magnons via q-deformed permutations (the Hecke
algebra, §2.1.12.1.1) before evaluation. Namely, let si be the permutation zi ¡ zi+1 and set in terms of a, b, cf §2.12.1?

(1.30) T pol
i := f≠1

i,i+1(si ≠ gi,i+1) , fi,i+1 := f(zi/zi+1) , gi,i+1 := g(zi/zi+1) ,

2 Note that ⁄ defined in (1.271.27) is the conjugate of the partition associated to µ in [Ugl95Ugl95] follow-
ing [JKK+95aJKK+95a]. See §3.2.33.2.3 for the reason of the conjugation.
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(1.29) Â�⁄(z1, · · · , zM ) :=
A

MŸ

m<n

(q zm ≠ q≠1zn) (q≠1zm ≠ q zn)
B

P ı
⁄ (z1, · · · , zM ) .

Besides the ‘symmetric square’ of the q-Vandermonde product it features the special case
of a Macdonald polynomial (§2.1.22.1.2) with parameters pı = qı = q2. The dependence on
q2 reflects a sort of symmetry of the Hamiltonian under q ‘æ ≠q, see app. In the notation
of Macdonald [Mac95Mac95,Mac98Mac98] the parameters of P ı

⁄ are related as qı = tı – for – = 1/2:
P ı

⁄ is a quantum spherical zonal function. See also Figure 44 on p. 2626. cf [Nou96Nou96], . . . ,

Cher-Matsuo corresp

[Kasatani Pasquier,

Kasatani Takeyama,

Stokman]?

The other components are more involved than in the isotropic case (1.41.4). They are
obtained from (1.291.29) by moving the magnons via q-deformed permutations (the Hecke
algebra, §2.1.12.1.1) before evaluation. Namely, let si be the permutation zi ¡ zi+1 and set in terms of a, b, cf §2.12.1?

(1.30) T pol
i := f≠1

i,i+1(si ≠ gi,i+1) , fi,i+1 := f(zi/zi+1) , gi,i+1 := g(zi/zi+1) ,

2 Note that ⁄ defined in (1.271.27) is the conjugate of the partition associated to µ in [Ugl95Ugl95] follow-
ing [JKK+95aJKK+95a]. See §3.2.33.2.3 for the reason of the conjugation.

is a Macdonald polynomial with parameters

[Lamers, Pasquier, D.S., 20]

p = q2/�

�k ⌘ �̄k + 1

N � 2M + 1 � �1 � . . . � �M � 1

si ⌘ Ki,i+1

Weierstrass elliptic function with periods L and !

T pol

i := �t�1/2 tzi � zi+1

(zi � zi+1)
(1�Ki,i+1)

Rpol

i,i+1
:= t�1/2 T pol

i Ki,i+1

Ti zi Ti = zi+1 , Tj zi = zi Tj , if j 6= i, i+ 1

Ři,i+1(u) = t1/2
uT sp

i � (T sp

i )�1

tu� 1

q⇤ = (t⇤)1/2 = q

References
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The eigenvectors of the Uglov-Lamers model 

The other components are slightly more involved and they correspond to transport  
of the indices using the Hecke generators (generalising the permutations)

Q-DEFORMED HALDANE–SHASTRY, SPIN-RUIJSENAARS AND MACDONALD POLYNOMIALS 12

with f, g from (1.71.7). The operators that we need are built from these as follows. Let us
use (braid) diagrams to represent

Ti =
1 N

· ·· ·· ·

i+1i

, T ≠1
i =

1 N

· ·· ·· ·

i i+1

.(1.31a)

(We included the inverse for completeness; it doesn’t feature in the following. Note that
these diagrams di�er from those in (1.101.10), where each line comes with a parameter.)
Next, using cycle notation (j, j ≠ 1, · · · , i) = sj≠1 · · · si let

T(j,j≠1,···,i) = Tj≠1 · · · Ti =

1 N

· ·· ·· ·

ji

, i Æ j ,(1.31b)

so T(i,i) = 1, T(i+1,i) = Ti, T(i+2,i+1,i) = Ti+1 Ti, and so on. Further define

T{i1,···,iM } = T(i1,···,1) · · · T(iM ,···,M) =

N

···

M

iM

· · ·

· · ·

1

i1

,(1.31c)

where we denoted the shortest permutation such that m ‘≠æ im for all 1 Æ m Æ M by

(1.32) {i1, · · · , iM } := (i1, i1 ≠ 1, · · · , 1) · · · (iM , iM ≠ 1, · · · , M) .

In §3.1.23.1.2, cf. (1.381.38) below, we’ll show that the wave function is obtained from (1.291.29) as

(1.33) �µ(i1, · · · , iM ) = ÈÈi1, · · · , iM |µÍ = evÊ

1
T pol

{i1,···,iM }

Â�⁄(µ)(z1, · · · , zM )
2

.

Here �µ depends on the positions (sites) im œ ZN of the magnons on the spin chain, while
the polynomial Â�⁄(µ) depends on the M ‘q-magnon coordinates’ zm, which we think of
as being transported by the Hecke action to the same location zim œ S1 µ C upon evalu-
ation. Whereas the ‘initial’ component (1.281.28) is a symmetric polynomial in M variables
prior to evaluation, any other T pol

{i1,···,iM }

Â�⁄(µ)(z1, · · · , zM ) is a non-symmetric polynomial
in iM > M variables. In particular, the Hecke operators in (1.331.33) act nontrivially even
though (1.291.29) is symmetric.

Comments. Spin-chain eigenvectors with a simple component also appeared in
[DZJ05DZJ05][JdG etc, Kasatani–Pasquier], although the way in which it determines all other
components is di�erent. Concrete examples of our highest-weight vectors and their
physical interpretation are given in §3.63.6.

i. Largest monomial. Write z⁄ = z⁄1
1 · · · z⁄N

N , appending zeroes to ⁄ if necessary.
With respect to the dominance ordering, see (2.272.27) in §2.1.22.1.2, the highest term in (1.331.33)
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This result nicely generalises the construction of the eigenvectors of the ordinary 
Haldane-Shastry model



Th Uglov-Lamers model at q=i 

The integrable structure of the isotropic Haldane-Shastry model can be retrieved  
in the c=1 CFT with affine su(2) symmetry [Haldane et al. 92, Bernard, Pasquier, D.S., 94]

What about the low energy limit of the q-HS model at             ? What is the symmetry  
of the model for q root of unity?

The spectrum of the two left and right Hamiltonian is given in terms of a collection of
M = bN/2c integers µ1, . . . , µM with N � 1 � µ1 > . . . > µM � 1 and two consecutive
such integers are separated by a distance of at least two units, µk+1 > µk + 1,

"
L,R

(µ) =

MX

m=1

✏
L,R

(µm) (3.10)

with

"
L
(n) =

1

q� q�1

⇣
q
N�n

[n]� n

N
[N ]

⌘
, "

R
(n) =

�1

q� q�1

⇣
q
n�N

[n]� n

N
[N ]

⌘
(3.11)

such that the combined Hamiltonian has a real spectrum when q is real or |q| = 1 ,

"(n) =
1

2

�
"
L
(n) + "

R
(n)

�
=

1

2
[n][N � n] . (3.12)

3.1 The long range spin chain at q = i

The spectrum of the long range chain simplifies dramatically when q = i, given that in this
case

[2k] = 0 and [2k + 1] = (�1)
k
. (3.13)

The cases of even and odd length, N = 2L or N = 2L + 1 are qualitatively different and
will be treated separately.

3.1.1 Even length N = 2L

In the case of even length, the matrix elements contain divergences. This is in particular
the case of the potential for site situated on opposite sites of the unit circle

Vj,j+L =
1

(q + q�1)2
, (3.14)

so that it contains a double pole when q ! i. Other potential divergences may occur from
the expressions (3.3) and (3.7) since

f(!
L
) = f(�1) =

2

q + q�1
. (3.15)

3.1.2 Odd length N = 2L+ 1

In the case of the odd length none of the above divergences occur and all the matrix elements
of the Hamiltonian are finite. In this case, the total energy "(µ) is always zero because either
[n] of [N � n] is zero. However, the left/right energies are not individually vanishing and
moreover they are purely imaginary and linear with the mode number n,

"
L
(n) = �"

R
(n) =

(�1)
L

2i

8
<

:
� n

N , n = 2k

N�n
N , n = 2k + 1

. (3.16)
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The simplest case to look at is q=i, because of the link with the free fermions

3 The long range spin chain

An integrable long-range version of the XXZ spin chain was proposed in [3] and studied
further in [4–6]. Its Hamiltonian can be written as

H
L

qHS =
[N ]

N

X

1i<jN
Vij S

L

[i,j] (3.1)

where the translationally invariant potential Vij is given by

Vij =
zizj

(qzi � q�1zj)(qzj � q�1zi)
, zj = !

j
, [N ] =

q
N � q

�N

q� q�1
, (3.2)

and

S
L

[i,j] =

  Y
i<k<j

Řk,k+1(zj/zk)

!
ei

 !Y
i<k<j

Řk,k+1(zk/zj)

!
, i < j , (3.3)

with

Řk,k+1(u) = 1� f(u) ek , f(u) =
u� 1

qu� q�1
. (3.4)

The relation

f(u) + f(u
�1

) = (q + q
�1

)f(u)f(u
�1

) (3.5)

together with the Temperley-Lieb relation (1.5) insures that Řk,k+1(u) Řk,k+1(u
�1

) = 1.
The interaction (3.3) is not symmetric by parity, i.e. by sending i ! N � i, instead

there exists another Hamiltonian

H
R

qHS =
[N ]

N

X

1i<jN
Vij S

R

[i,j] (3.6)

with

S
R

[i,j] =

 !Y
ik<j�1

Řk,k+1(zk/zi)

!
ej�1

  Y
ik<j�1

Řk,k+1(zi/zk)

!
, i < j , (3.7)

such that the two Hamiltonians commute,

[H
L

qHS,H
R

qHS] = 0 , (3.8)

and a parity invariant Hamiltonian can be defined by the half-sum of the two operators,

HqHS =
1

2

�
H

L

qHS +H
R

qHS

�
. (3.9)

– 5 –

Since

kj = q�j

c = 1� 3

2

�2

⇡(⇡ � �)

� = 0 c = 1

q = ei
⇡

k+1

q = i c = 1 or � 2

[ eHL, eHR] = 0

H =
1

2
( eHL + eHR)

f(u�1) = �f(u)

"(n) =
1

2
[n][N � n] = 0 . (108)

Řk,k+1(u) = 1� f(u) ek , f(u) =
u� 1

q u� q�1
. (109) Rcheck

� = ±2�

q = ei�

V (z)

� = 1

{z1, z2, . . . , zN} , and {d1, d2, . . . , dN}
[zi, zj] = [di, dj] = 0

S(p2, p1) ⌘
A(p2, p1)

A(p1, p2)
= �eip1+ip2 � 2�eip2 + 1

eip1+ip2 � 2�eip1 + 1

"(p) = �J(2�� eip � e�ip)

Kij zi = zj Kij , (110)

Ki,i+1 dk =

8
><

>:

dk Ki,i+1, k 6= i, i+ 1 ,

di+1 Ki,i+1 � �, k = i ,

di Ki,i+1 + � k = i+ 1 .

(111)

 ! 1
�i,j+1 + �i,j�1

 ! 0

HB,F =
NX

j=1

(zj@j)
2 +

X

j 6=k

�(� ⌥ Pjk)
zjzk

(zj � zk)(zk � zj)

34
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q=i

which contains a double pole when q ! i. Like for the q-translation operator, as soon as
|i� j| � L additional divergences arise from the R-matrices in the spin operators.

3.2 Odd length N = 2L+ 1

When the length is odd the total energy "(µ) from (3.14) is always zero because either [n]q
of [N � n]q is zero. However, the chiral energies do not vanish individually, but are purely
imaginary and (affine) linear with the mode number n,

"
l
(n) = �"

r
(n) =

(�1)
L

2i
⇥

8
<

:
� n

N , n = 2k

N�n
N , n = 2k + 1

. (3.28)

are you sure about that? I get

"
l
(n)|q=i = �"

r
(n)|q=i =

i (�1)
L

2

✓
(�1)

n
�n odd +

n

N

◆
, (3.29)

with slightly different signs. A finite total energy can be defined if we rescale the spectrum
by q + q

�1,

lim
q!i

"(n)

q + q�1
= (�1)

L�1 ⇥

8
<

:

n
2
, n = 2k

N�n
2

, n = 2k + 1

. (3.30)

3.2.1 First look at the Hamiltonians

In terms of the matrix elements none of the divergences that were present for even length
occur and all the matrix elements of the q-translation operator and Hamiltonian are finite.
In this case, the potential becomes

�4V (k) =
1

cos2(⇡k/N)
= 1 + f

2
�
!
k
�
, (3.31)

where

f
�
!
j
�
= �f

�
!
�j

�
= tan(⇡j/N) . (3.32)

Unlike for even N , these functions are regular at q = i for integer values of k.
In order to simplify the expression for the spin interaction operators we define nested

commutators of successive Temperley–Lieb generators as

e[l,m+1] ⌘ [el, [el+1, . . . [em�1, em] . . .]] = [[. . . [el, el+1], . . . em�1], em] , i  l < m < j .

(3.33)
Here the order of commutators does not matter since the Temperley–Lieb generators com-
mute unless they are successive, which can be proved by induction using the Jacobi identity.
The latter also implies that the nested commutators vanish if any ek with l  k  m is

– 9 –

in particular



Th Uglov-Lamers model at q=i 

The proof can be done by induction, starting with

S
L/R
[i,i+1;n] = ei . (3.25)

and using the recursion relations (3.24) in the form

S
L

[i,j+1;n] = S
L

[i,j;n] + f(!
n�j

) [S
L

[i,j;n], ej ]� f
2
(!

n�j
) ej S

L

[i,j;n] ej (3.26)

S
R

[i�1,j;n] = S
R

[i,j;n] � f(!
i�n

) [ei�1, S
R

[i,j;n]]� f
2
(!

i�n
) ei�1 S

R

[i,j;n] ei�1 . (3.27)

The first terms in (3.26) and (3.27) reproduce the structure of the previous expression, the
second terms increases the length of the nested commutators by one the the right and to
the left respectively, while the third terms give a result proportional to ej and to ei�1 and
thus moving a Temperley-Lieb generator to the right and to the left respectively. At each
level of nesting, we get a factor ±f , and every time the index of a solitary Temperley Lieb
generator is shifted by one to the right or to the left, we get a factor �f

2. For example,

S
L

[i,i+2]
= e[i,i+1] � f

2
(!)e[i+1,i+2] + f(!)e[i,i+2] , (3.28)

S
L

[i,i+3]
= e[i,i+1] � f

2
(!

2
)e[i+1,i+2] + f

2
(!

2
)f

2
(!)e[i+2,i+3]

+ f(!
2
)e[i,i+2] � f

2
(!

2
)f(!)e[i+1,i+3] + f(!

2
)f(!)e[i,i+3] .

The general result for the “left” interaction is

S
L

[i,i+k] =

k�1X

l=0

k�lX

m=1

(�1)
l

lY

j=1

f
2
(!

k�j
)

m�1Y

n=1

f(!
k�l�n

) e[i+l,i+l+m] . (3.29)

For the “right” interaction we get

S
R

[j�2,j] = e[j�1,j] � f
2
(!)e[j�2,j�1] � f(!)e[j�2,j] , (3.30)

S
R

[j�3,j] = e[j�1,j] � f
2
(!

2
)e[j�2,j�1] + f

2
(!

2
)f

2
(!)e[j�3,j�2]

� f(!
2
)e[j�2,j] + f

2
(!

2
)f(!)e[j�3,j�1] + f(!

2
)f(!)e[j�3,j] ,

and generically

S
R

[j�k,j] =

k�1X

l=0

k�lX

m=1

(�1)
l+m�1

lY

i=1

f
2
(!

k�i
)

m�1Y

n=1

f(!
k�l�n

) e[j�l�m,j�l] . (3.31)

Checked by Jules.

3.1.3 Vanishing of the total Hamiltonian at N odd?

The vanishing of the total energy cf. (3.16) suggest that the leading part of the Hamiltonian
evaluated strictly at q = i might vanish when N is odd. In order to check this property we
have to check wether the full Hamiltonian

HqHS =
(�1)

L+1

8N

N�1X

j=1

N�jX

k=1

⇣
1 + f

2
(!

k
)

⌘⇣
S
L

[j,j+k] + S
R

[j,j+k]

⌘
(3.32)
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for example:

A finite total energy can be defined if we rescale the spectrum by q + q
�1,

"̃(n) = lim
q!i

"(n)

q + q�1
= (�1)

L�1

8
<

:

n
2
, n = 2k

N�n
2

, n = 2k + 1

. (3.17)

The Hamiltonian becomes

Vj�k ⌘ Vjk = � 1

4 cos2 ⇡(j � k)/N
(3.18)

and

f(!
j
) = �f(!

�j
) = tan⇡j/N , (3.19)

so that

�4Vk = 1 + f
2
(!

k
) . (3.20)

Remark that, unlike for n even, for odd N these functions are never divergent for integer
values of j, k at exactly q = i. In order to simplify the expression for the spin interaction
operators S

L

[i,j] and S
R

[i,j] we define first a slight generalisation

S
L

[i,j;n] =

  Y
i<k<j

Řk,k+1(zn/zk)

!
ei

 !Y
i<k<j

Řk,k+1(zk/zn)

!
, i < j , (3.21)

and

S
R

[i,j;n] =

 !Y
ik<j�1

Řk,k+1(zk/zn)

!
ej�1

  Y
ik<j�1

Řk,k+1(zn/zk)

!
, i < j ,

(3.22)

so that

S
L

[i,j] = S
L

[i,j;j] and S
R

[i,j] = S
R

[i,j;i] . (3.23)

The two expressions defined above obey the recursion relations

S
L

[i,j+1;n] = (1� f(!
n�j

) ej) S
L

[i,j;n] (1 + f(!
n�j

) ej) ,

S
R

[i,j;n] = (1� f(!
i�n

) ei) S
R

[i+1,j;n] (1 + f(!
i�n

) ei) . (3.24)

Given this structure, we can show that S
L

[i,j;n] and S
R

[i,j;n] contain:

• terms proportional to ek with k = i, . . . , j � 1.

• nested commutators of successive generators [el, [el+1, . . . [em�1, em] . . .]] =

[[. . . [el, el+1], . . . em�1], em] ⌘ e[l,m+1] with i  l < m < j. Since the Temperley-Lieb
generators commute except if they are succesive, the order of commutators does not
matter. This property can be proved by induction using the Jacobi identity, and it
also implies that the nested commutators vanish if any ek with l  k  m is missing
from the string. The previous term can be included as e[k,k+1] ⌘ ek.
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in this case the spin interaction can be written exclusively with in terms of nested  
commutators of the TL generators 

kj = q�j

c = 1� 3

2

�2

⇡(⇡ � �)

� = 0 c = 1

q = ei
⇡

k+1

q = i c = 1 or � 2

[ eHL, eHR] = 0

H =
1

2
( eHL + eHR)

f(u�1) = �f(u)

e[l,m+1] := [el, [el+1, . . . [em�1, em] . . .]] = [[. . . [el, el+1], . . . em�1], em]

"(n) =
1

2
[n][N � n] = 0 . (108)

Řk,k+1(u) = 1� f(u) ek , f(u) =
u� 1

q u� q�1
. (109) Rcheck

� = ±2�

q = ei�

V (z)

� = 1

{z1, z2, . . . , zN} , and {d1, d2, . . . , dN}

[zi, zj] = [di, dj] = 0

S(p2, p1) ⌘
A(p2, p1)

A(p1, p2)
= �eip1+ip2 � 2�eip2 + 1

eip1+ip2 � 2�eip1 + 1

"(p) = �J(2�� eip � e�ip)

Kij zi = zj Kij , (110)

Ki,i+1 dk =

8
><

>:

dk Ki,i+1, k 6= i, i+ 1 ,

di+1 Ki,i+1 � �, k = i ,

di Ki,i+1 + � k = i+ 1 .

(111)

 ! 1

�i,j+1 + �i,j�1

 ! 0

34

Jacobi identity and TL algebra

and in general:

missing from the string. Note that e[k,k+1] = ek is just a Templerley–Lieb generator. We
claim that the chiral interactions can be written as

S
l
[i,i+k] =

k�1X

l=0

k�lX

m=1

(�1)
l

lY

j=1

f
2
(!

k�j
)

m�1Y

n=1

f(!
k�l�n

) e[i+l,i+l+m] , (3.34)

and

S
r
[j�k,j] =

k�1X

l=0

k�lX

m=1

(�1)
l+m�1

lY

i=1

f
2
(!

k�i
)

m�1Y

n=1

f(!
k�l�n

) e[j�l�m,j�l] , (3.35)

or by shifting j ! j + k.

S
r
[j,j+k] =

k�1X

l=0

k�lX

m=1

(�1)
l+m�1

lY

i=1

f
2
(!

k�i
)

m�1Y

n=1

f(!
k�l�n

) e[j+k�l�m,j+k�l] . (3.36)

We can remove some of the intermediate steps at a later stage. Using the notation

fp,q(z) =

p�1Y

i=0

f(z!
i
)

p+q�1Y

i=p

f
2
(z!

i
) (3.37)

one can further simplify the

S
l
[j,j+k] =

k�1X

l=0

(�1)
l
k�1X

m=l

fm�l,l (!
k�m

) e[j+l,j+m+1] , (3.38)

S
r
[j,j+k] =

k�1X

l=0

(�1)
k�l�1

k�1X

m=l

fm�l,k�m�1 (!
l+1

) e[j+l,j+m+1] , (3.39)

3.2.2 Vanishing of the total Hamiltonian

The vanishing of the total energy cf. (3.28) suggest that the leading part of the Hamiltonian
evaluated strictly at q = i might vanish when N is odd. In order to check this property we
have to check wether the full Hamiltonian (We should find a better notation for q = i; for
the moment I suppress the index)

H =
(�1)

L+1

8N

N�1X

j=1

N�jX

k=1

⇣
1 + f

2
(!

k
)

⌘⇣
S
l
[j,j+k] + S

r
[j,j+k]

⌘
|q=i (3.40)

is zero or not. When N = 3 we have 1 + f
2
(!) = 1 + f

2
(!

2
) = 4 and

H =
1

6

⇣
S
l
[12]

+ S
l
[13]

+ S
l
[23]

+ S
r
[12]

+ S
r
[13]

+ S
r
[23]

⌘
= (3.41)

=
1

6

�
e1 + e1 � f

2
(!)e2 + f(!)[e1, e2] + e2 + e1 + e2 � f

2
(!)e1 � f(!)[e1, e2] + e2

�

which is equal to zero because 3 � f
2
(!) = 0. We see therefore that the vanishing of the

total Hamiltonian is a non-trivial property and it does not occur term by term.
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and
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)
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n=1

f(!
k�l�n
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S
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[j,j+k] =
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l=0

k�lX
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(!

k�i
)
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n=1

f(!
k�l�n

) e[j+k�l�m,j+k�l] . (3.37)

We can remove some of the intermediate steps at a later stage. Using the notation

fp,q(z) =

p�1Y

i=0

f(z!
i
)

p+q�1Y

i=p

f
2
(z!

i
) (3.38)

one can further simplify the

S
l
[j,j+k] =

k�1X

l=0

(�1)
l
k�1X

m=l

fm�l,l (!
k�m

) e[j+l,j+m+1] , (3.39)

S
r
[j,j+k] =

k�1X

l=0

(�1)
k�l�1

k�1X

m=l

fm�l,k�m�1 (!
l+1

) e[j+l,j+m+1] , (3.40)

3.2.2 Vanishing of the total Hamiltonian

The vanishing of the total energy cf. (3.28) suggest that the leading part of the Hamiltonian
evaluated strictly at q = i might vanish when N is odd. In order to check this property we
have to check wether the full Hamiltonian (We should find a better notation for q = i; for
the moment I suppress the index)

H =
(�1)

L+1

8N

N�1X

j=1

N�jX

k=1

⇣
1 + f

2
(!

k
)

⌘⇣
S
l
[j,j+k] + S

r
[j,j+k]

⌘
|q=i (3.41)

is zero or not. When N = 3 we have 1 + f
2
(!) = 1 + f

2
(!

2
) = 4 and

H =
1

6

⇣
S
l
[12]

+ S
l
[13]

+ S
l
[23]

+ S
r
[12]

+ S
r
[13]

+ S
r
[23]

⌘
= (3.42)

=
1

6

�
e1 + e1 � f

2
(!)e2 + f(!)[e1, e2] + e2 + e1 + e2 � f

2
(!)e1 � f(!)[e1, e2] + e2

�

– 10 –



Th Uglov-Lamers model at q=i 

There are two subtleties in defining the Hamiltonian at q=i :

The spectrum of the two left and right Hamiltonian is given in terms of a collection of
M = bN/2c integers µ1, . . . , µM with N � 1 � µ1 > . . . > µM � 1 and two consecutive
such integers are separated by a distance of at least two units, µk+1 > µk + 1,

"
L,R

(µ) =

MX

m=1

✏
L,R

(µm) (3.10)

with

"
L
(n) =

1

q� q�1

⇣
q
N�n

[n]� n

N
[N ]

⌘
, "

R
(n) =

�1

q� q�1

⇣
q
n�N

[n]� n

N
[N ]

⌘
(3.11)

such that the combined Hamiltonian has a real spectrum when q is real or |q| = 1 ,

"(n) =
1

2

�
"
L
(n) + "

R
(n)

�
=

1

2
[n][N � n] . (3.12)

3.1 The long range spin chain at q = i

The spectrum of the long range chain simplifies dramatically when q = i, given that in this
case

[2k] = 0 and [2k + 1] = (�1)
k
. (3.13)

The cases of even and odd length, N = 2L or N = 2L + 1 are qualitatively different and
will be treated separately.

3.1.1 Even length N = 2L

In the case of even length, the matrix elements contain divergences. This is in particular
the case of the potential for site situated on opposite sites of the unit circle

Vj,j+L =
1

(q + q�1)2
, (3.14)

so that it contains a double pole when q ! i. Other potential divergences may occur from
the expressions (3.3) and (3.7) since

f(!
L
) = f(�1) =

2

q + q�1
. (3.15)

3.1.2 Odd length N = 2L+ 1

In the case of the odd length none of the above divergences occur and all the matrix elements
of the Hamiltonian are finite. In this case, the total energy "(µ) is always zero because either
[n] of [N � n] is zero. However, the left/right energies are not individually vanishing and
moreover they are purely imaginary and linear with the mode number n,

"
L
(n) = �"

R
(n) =

(�1)
L

2i

8
<

:
� n

N , n = 2k

N�n
N , n = 2k + 1

. (3.16)
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MX
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✏
L,R

(µm) (3.10)

with

"
L
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1

q� q�1

⇣
q
N�n
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N
[N ]

⌘
, "

R
(n) =

�1

q� q�1

⇣
q
n�N

[n]� n

N
[N ]

⌘
(3.11)

such that the combined Hamiltonian has a real spectrum when q is real or |q| = 1 ,
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1

2

�
"
L
(n) + "

R
(n)

�
=

1

2
[n][N � n] . (3.12)

3.1 The long range spin chain at q = i

The spectrum of the long range chain simplifies dramatically when q = i, given that in this
case

[2k] = 0 and [2k + 1] = (�1)
k
. (3.13)

The cases of even and odd length, N = 2L or N = 2L + 1 are qualitatively different and
will be treated separately.

3.1.1 Even length N = 2L

In the case of even length, the matrix elements contain divergences. This is in particular
the case of the potential for site situated on opposite sites of the unit circle

Vj,j+L =
1

(q + q�1)2
, (3.14)

so that it contains a double pole when q ! i. Other potential divergences may occur from
the expressions (3.3) and (3.7) since

f(!
L
) = f(�1) =

2

q + q�1
. (3.15)

3.1.2 Odd length N = 2L+ 1

In the case of the odd length none of the above divergences occur and all the matrix elements
of the Hamiltonian are finite. In this case, the total energy "(µ) is always zero because either
[n] of [N � n] is zero. However, the left/right energies are not individually vanishing and
moreover they are purely imaginary and linear with the mode number n,

"
L
(n) = �"

R
(n) =

(�1)
L

2i

8
<

:
� n

N , n = 2k

N�n
N , n = 2k + 1

. (3.16)
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:

kj = q�j

c = 1� 3

2

�2

⇡(⇡ � �)

� = 0 c = 1

q = ei
⇡

k+1

q = i c = 1 or � 2

[ eHL, eHR] = 0

H =
1

2
( eHL + eHR)

"(n) =
1

2
[n][N � n] = 0 . (108)

Řk,k+1(u) = 1� f(u) ek , f(u) =
u� 1

q u� q�1
. (109) Rcheck

� = ±2�

q = ei�

V (z)

� = 1

{z1, z2, . . . , zN} , and {d1, d2, . . . , dN}

[zi, zj] = [di, dj] = 0

S(p2, p1) ⌘
A(p2, p1)

A(p1, p2)
= �eip1+ip2 � 2�eip2 + 1

eip1+ip2 � 2�eip1 + 1

"(p) = �J(2�� eip � e�ip)

Kij zi = zj Kij , (110)

Ki,i+1 dk =

8
><

>:

dk Ki,i+1, k 6= i, i+ 1 ,

di+1 Ki,i+1 � �, k = i ,

di Ki,i+1 + � k = i+ 1 .

(111)

 ! 1

�i,j+1 + �i,j�1

 ! 0

HB,F =
NX

j=1

(zj@j)
2 +

X

j 6=k

�(� ⌥ Pjk)
zjzk

(zj � zk)(zk � zj)

34

the total energy is identically zero at
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L,R

(µ) =

MX

m=1

✏
L,R

(µm) (3.10)

with

"
L
(n) =

1

q� q�1

⇣
q
N�n

[n]� n

N
[N ]

⌘
, "

R
(n) =

�1

q� q�1

⇣
q
n�N

[n]� n

N
[N ]

⌘
(3.11)

such that the combined Hamiltonian has a real spectrum when q is real or |q| = 1 ,

"(n) =
1

2

�
"
L
(n) + "

R
(n)

�
=

1

2
[n][N � n] . (3.12)
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The spectrum of the long range chain simplifies dramatically when q = i, given that in this
case
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k
. (3.13)

The cases of even and odd length, N = 2L or N = 2L + 1 are qualitatively different and
will be treated separately.

3.1.1 Even length N = 2L

In the case of even length, the matrix elements contain divergences. This is in particular
the case of the potential for site situated on opposite sites of the unit circle

Vj,j+L =
1

(q + q�1)2
, (3.14)

so that it contains a double pole when q ! i. Other potential divergences may occur from
the expressions (3.3) and (3.7) since

f(!
L
) = f(�1) =

2

q + q�1
. (3.15)

3.1.2 Odd length N = 2L+ 1

In the case of the odd length none of the above divergences occur and all the matrix elements
of the Hamiltonian are finite. In this case, the total energy "(µ) is always zero because either
[n] of [N � n] is zero. However, the left/right energies are not individually vanishing and
moreover they are purely imaginary and linear with the mode number n,

"
L
(n) = �"

R
(n) =

(�1)
L

2i

8
<

:
� n

N , n = 2k

N�n
N , n = 2k + 1

. (3.16)
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but

the total Hamiltonian is also zero for odd number of sites:

For higher sizes, the identities we have to check are more and more complicated. In
general, the total Hamiltonian is given by

H =
(�1)

L+1

8N

N�1X

j=1

N�jX

k=1

k�1X

l=0

k�1X

m=l

�
↵

l
k,l,m + ↵

r
k,l,m

�
e[j+l,j+m+1] , (3.42)

with

↵
l
k,l,m = (�1)

l
(1 + f

2
(!

k
))fm�l,l (!

k�m
) = (�1)

l
⇣
fm�l,l (!

k�m
) + fm�l,l+1 (!

k�m
)

⌘
,

↵
r
k,l,m = (�1)

k�l�1

⇣
fm�l,k�m�1 (!

l+1
) + fm�l,k�m (!

l+1
)

⌘
. (3.43)

The next step is to identify the coefficients of the generators e[p,q+1] in the total Hamiltonian,
for any integers p and q such that 1  p  q < N , by keeping track of the contribution
from the left and right Hamiltonians,

H =

X

1pq<N

�
h
l
p,q + h

r
p,q

�
e[p,q+1] , (3.44)

with

h
l,r
p,q =

pX

j=1

NX

k=q+1

↵
l,r
k�j,p�j,q�j (3.45)

A How to prove (3.35) and (3.35)

For the proof of (3.35) and (3.35) we introduce the slight generalisations

S
l
[i,j];n ⌘

 
(Y

j>k>i

Řk,k+1

�
!
n�k
�
!
ei

 
*Y

i<k<j

Řk,k+1

�
!
k�n
�
!
, i < j , (A.1)

and

S
r
[i,j];n =

 
(Y

j>k>i

Řk�1,k(!
k�n

)

!
ej�1

 
*Y

i<k<j

Řk�1,k(!
n�k

)

!
, i < j , (A.2)

so that

S
l
[i,j] = S

l
[i,j];j and S

r
[i,j] = S

r
[i,j];i . (A.3)

These operators obey the recursion relations

S
l
[i,j+1];n =

�
1� f(!

n�j
) ej
�
S
l
[i,j];n

�
1 + f(!

n�j
) ej
�
,

S
r
[i,j];n =

�
1� f(!

i�n
) ei
�
S
r
[i+1,j];n

�
1 + f(!

i�n
) ei
�
.

(A.4)

Given this structure, let us show that S
l
[i,j];n and S

r
[i,j];n is a linear combination of nested

commutators of Temperley–Lieb generators. We will use induction, starting with

S
l
[i,i+1];n = S

r
[i,i+1];n = ei . (A.5)
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For higher sizes, the identities we have to check are more and more complicated. In
general, the total Hamiltonian is given by

H =
(�1)

L+1

8N

N�1X

j=1

N�jX

k=1

k�1X

l=0

k�1X

m=l

�
↵

l
k,l,m + ↵

r
k,l,m

�
e[j+l,j+m+1] , (3.42)

with

↵
l
k,l,m = (�1)

l
(1 + f

2
(!

k
))fm�l,l (!

k�m
) = (�1)

l
⇣
fm�l,l (!

k�m
) + fm�l,l+1 (!

k�m
)

⌘
,

↵
r
k,l,m = (�1)

k�l�1

⇣
fm�l,k�m�1 (!

l+1
) + fm�l,k�m (!

l+1
)

⌘
. (3.43)

The next step is to identify the coefficients of the generators e[p,q+1] in the total Hamiltonian,
for any integers p and q such that 1  p  q < N , by keeping track of the contribution
from the left and right Hamiltonians,

H =

X

1pq<N

�
h
l
p,q + h

r
p,q

�
e[p,q+1] , (3.44)

with

h
l,r
p,q =

pX

j=1

NX

k=q+1

↵
l,r
k�j,p�j,q�j (3.45)

h
l
p,q = �h

r
p,q , 1  p  q < N (3.46)

A How to prove (3.34) and (3.34)

For the proof of (3.34) and (3.34) we introduce the slight generalisations

S
l
[i,j];n ⌘

 
(Y

j>k>i

Řk,k+1

�
!
n�k
�
!
ei

 
*Y

i<k<j

Řk,k+1

�
!
k�n
�
!
, i < j , (A.1)

and

S
r
[i,j];n =

 
(Y

j>k>i

Řk�1,k(!
k�n

)

!
ej�1

 
*Y

i<k<j

Řk�1,k(!
n�k

)

!
, i < j , (A.2)

so that

S
l
[i,j] = S

l
[i,j];j and S

r
[i,j] = S

r
[i,j];i . (A.3)

These operators obey the recursion relations

S
l
[i,j+1];n =

�
1� f(!

n�j
) ej
�
S
l
[i,j];n

�
1 + f(!

n�j
) ej
�
,

S
r
[i,j];n =

�
1� f(!

i�n
) ei
�
S
r
[i+1,j];n

�
1 + f(!

i�n
) ei
�
.

(A.4)
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explicit but tedious expressions/proof 

TO DO: fermionic expression:

and redefine the gl1|1 generators at each site j as

{f+

j , fj} =(�1)
j ⌘ Ej , Nj = (�1)

j
f
+

j fj , (2.3)

[Nj , fj ] = �fj , [Nj , f
+

j ] = f
+

j .

In these variables we have1

ej =

⇣
f
+

j + f
+

j+1

⌘
(fj + fj+1) (2.4)

= (�1)
j+1

i

h⇣
c
+

j cj+1 + c
+

j+1
cj

⌘
+ i

⇣
c
+

j cj � c
+

j+1
cj+1

⌘i

The global gl1|1 generators are given by

F
+

1
=

NX

j=1

f
+

j , F1 =

NX

j=1

fj , N =

NX

j=1

(�1)
j
f
+

j fj � L , E =

NX

j=1

"j . (2.5)

Together with

F
+

2
=

NX

j<k

f
+

j f
+

k , F2 =

NX

j<k

fjfk , [F
+

2
, F2] = N , (2.6)

they commute with the Temperley-Lieb generators ej , therefore with the Hamiltonian,
HXX = �

PN
j=1

ej . In this section we consider the number of sites to be even, N = 2L, so
that the total central charge E = 0, and for the periodic chain the periodicity conditions
are given by

f
+

2L+1
⌘ f

+

1
, f2L+1 ⌘ f1 , (2.7)

which means that

c
+

2L+1
⌘ (�1)

L
c
+

1
, c2L+1 ⌘ (�1)

L
c1 , (2.8)

or that the fermions c
+

j , cj are anti-periodic for odd L and periodic for even L, This in
turn implies that the spin operators obey the twisted periodicity boundary conditions

�
±
2L+1

= (�1)
Sz
�
±
1
, (2.9)

where S
z
=

1

2

P
2L
j=1

�
z
j .

Spectrum of the twisted periodic chain vs. the open one, symmetries of the spectrum.
Bethe Ansatz and Fabricius-McCoy strings?

1Notice that both transformations ej ! (�1)ji ej and ej ! �ej are preserving the Temperley-Lieb
algebra for q = i.
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the nested TL commutators are quadratic in fermions                   long-range free fermionic model
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One can get a non vanishing  non-chiral Hamiltonian by expanding to the next order in 

A finite total energy can be defined if we rescale the spectrum by q + q
�1,

"̃(n) = lim
q!i

"(n)

q + q�1
= (�1)

L�1

8
<

:

n
2
, n = 2k

N�n
2

, n = 2k + 1

. (3.17)

The Hamiltonian becomes

Vj�k ⌘ Vjk = � 1

4 cos2 ⇡(j � k)/N
(3.18)

and

f(!
j
) = �f(!

�j
) = tan⇡j/N , (3.19)

so that

�4Vk = 1 + f
2
(!

k
) . (3.20)

Remark that, unlike for n even, for odd N these functions are never divergent for integer
values of j, k at exactly q = i. In order to simplify the expression for the spin interaction
operators S

L

[i,j] and S
R

[i,j] we define first a slight generalisation

S
L

[i,j;n] =

  Y
i<k<j

Řk,k+1(zn/zk)

!
ei

 !Y
i<k<j

Řk,k+1(zk/zn)

!
, i < j , (3.21)

and

S
R

[i,j;n] =

 !Y
ik<j�1

Řk,k+1(zk/zn)

!
ej�1

  Y
ik<j�1

Řk,k+1(zn/zk)

!
, i < j ,

(3.22)

so that

S
L

[i,j] = S
L

[i,j;j] and S
R

[i,j] = S
R

[i,j;i] . (3.23)

The two expressions defined above obey the recursion relations

S
L

[i,j+1;n] = (1� f(!
n�j

) ej) S
L

[i,j;n] (1 + f(!
n�j

) ej) ,

S
R

[i,j;n] = (1� f(!
i�n

) ei) S
R

[i+1,j;n] (1 + f(!
i�n

) ei) . (3.24)

Given this structure, we can show that S
L

[i,j;n] and S
R

[i,j;n] contain:

• terms proportional to ek with k = i, . . . , j � 1.

• nested commutators of successive generators [el, [el+1, . . . [em�1, em] . . .]] =

[[. . . [el, el+1], . . . em�1], em] ⌘ e[l,m+1] with i  l < m < j. Since the Temperley-Lieb
generators commute except if they are succesive, the order of commutators does not
matter. This property can be proved by induction using the Jacobi identity, and it
also implies that the nested commutators vanish if any ek with l  k  m is missing
from the string. The previous term can be included as e[k,k+1] ⌘ ek.
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result for the one-magnon dispersion relation:

the eigenstates of the chiral and the rescaled Hamiltonians are the same

kj = q�j

c = 1� 3

2

�2

⇡(⇡ � �)

� = 0 c = 1

q = ei
⇡

k+1

q = i c = 1 or � 2

[ eHL, eHR] = 0

H =
1

2
( eHL + eHR)

f(u�1) = �f(u)

e[l,m+1] := [el, [el+1, . . . [em�1, em] . . .]] = [[. . . [el, el+1], . . . em�1], em]

eH := lim
q!i

H

q + q�1

[ eH, eHR] = �[ eH, eHL] = 0

"(n) =
1

2
[n][N � n] = 0 . (108)

Řk,k+1(u) = 1� f(u) ek , f(u) =
u� 1

q u� q�1
. (109) Rcheck

� = ±2�

q = ei�

V (z)

� = 1

{z1, z2, . . . , zN} , and {d1, d2, . . . , dN}

[zi, zj] = [di, dj] = 0

S(p2, p1) ⌘
A(p2, p1)

A(p1, p2)
= �eip1+ip2 � 2�eip2 + 1

eip1+ip2 � 2�eip1 + 1

"(p) = �J(2�� eip � e�ip)

Kij zi = zj Kij , (110)

Ki,i+1 dk =

8
><

>:

dk Ki,i+1, k 6= i, i+ 1 ,

di+1 Ki,i+1 � �, k = i ,

di Ki,i+1 + � k = i+ 1 .

(111)

 ! 1

34

it might be possible, though hard, to get an explicit expression in terms of fermions

kj = q�j

c = 1� 3

2

�2

⇡(⇡ � �)

� = 0 c = 1

q = ei
⇡

k+1

q = i c = 1 or � 2

[eHL, eHR] = 0

H =
1

2
(eHL + eHR)

f(u�1) = �f(u)

e[l,m+1] := [el, [el+1, . . . [em�1, em] . . .]] = [[. . . [el, el+1], . . . em�1], em]

eH := lim
q!i

H

q + q�1

[eH, eHR] = �[eH, eHL] = 0

2H =
1

q + q�1
e1

2H(q + q�1) = e1

"(n) =
1

2
[n][N � n] = 0 . (108)

Řk,k+1(u) = 1� f(u) ek , f(u) =
u� 1

q u� q�1
. (109) Rcheck

� = ±2�

q = ei�

V (z)

� = 1

{z1, z2, . . . , zN} , and {d1, d2, . . . , dN}

[zi, zj] = [di, dj] = 0

S(p2, p1) ⌘
A(p2, p1)

A(p1, p2)
= �eip1+ip2 � 2�eip2 + 1

eip1+ip2 � 2�eip1 + 1

"(p) = �J(2�� eip � e�ip)

34
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The second subtlety appears at N even

The spectrum of the two left and right Hamiltonian is given in terms of a collection of
M = bN/2c integers µ1, . . . , µM with N � 1 � µ1 > . . . > µM � 1 and two consecutive
such integers are separated by a distance of at least two units, µk+1 > µk + 1,

"
L,R

(µ) =

MX

m=1

✏
L,R

(µm) (3.10)

with

"
L
(n) =

1

q� q�1

⇣
q
N�n

[n]� n

N
[N ]

⌘
, "

R
(n) =

�1

q� q�1

⇣
q
n�N

[n]� n

N
[N ]

⌘
(3.11)

such that the combined Hamiltonian has a real spectrum when q is real or |q| = 1 ,

"(n) =
1

2

�
"
L
(n) + "

R
(n)

�
=

1

2
[n][N � n] . (3.12)

3.1 The long range spin chain at q = i

The spectrum of the long range chain simplifies dramatically when q = i, given that in this
case

[2k] = 0 and [2k + 1] = (�1)
k
. (3.13)

The cases of even and odd length, N = 2L or N = 2L + 1 are qualitatively different and
will be treated separately.

3.1.1 Even length N = 2L

In the case of even length, the matrix elements contain divergences. This is in particular
the case of the potential for site situated on opposite sites of the unit circle

Vj,j+L =
1

(q + q�1)2
, (3.14)

so that it contains a double pole when q ! i. Other potential divergences may occur from
the expressions (3.3) and (3.7) since

f(!
L
) = f(�1) =

2

q + q�1
. (3.15)

3.1.2 Odd length N = 2L+ 1

In the case of the odd length none of the above divergences occur and all the matrix elements
of the Hamiltonian are finite. In this case, the total energy "(µ) is always zero because either
[n] of [N � n] is zero. However, the left/right energies are not individually vanishing and
moreover they are purely imaginary and linear with the mode number n,

"
L
(n) = �"

R
(n) =

(�1)
L

2i

8
<

:
� n

N , n = 2k

N�n
N , n = 2k + 1

. (3.16)
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in this case the dispersion relation is regular, but there are divergences (double poles)  
in the matrix elements of the Hamiltonians, since:

The spectrum of the two left and right Hamiltonian is given in terms of a collection of
M = bN/2c integers µ1, . . . , µM with N � 1 � µ1 > . . . > µM � 1 and two consecutive
such integers are separated by a distance of at least two units, µk+1 > µk + 1,

"
L,R

(µ) =

MX

m=1

✏
L,R

(µm) (3.10)

with

"
L
(n) =

1

q� q�1

⇣
q
N�n

[n]� n

N
[N ]

⌘
, "

R
(n) =

�1

q� q�1

⇣
q
n�N

[n]� n

N
[N ]

⌘
(3.11)

such that the combined Hamiltonian has a real spectrum when q is real or |q| = 1 ,

"(n) =
1

2

�
"
L
(n) + "

R
(n)

�
=

1

2
[n][N � n] . (3.12)

3.1 The long range spin chain at q = i

The spectrum of the long range chain simplifies dramatically when q = i, given that in this
case

[2k] = 0 and [2k + 1] = (�1)
k
. (3.13)

The cases of even and odd length, N = 2L or N = 2L + 1 are qualitatively different and
will be treated separately.

3.1.1 Even length N = 2L

In the case of even length, the matrix elements contain divergences. This is in particular
the case of the potential for site situated on opposite sites of the unit circle

Vj,j+L =
1

(q + q�1)2
, (3.14)

so that it contains a double pole when q ! i. Other potential divergences may occur from
the expressions (3.3) and (3.7) since

f(!
L
) = f(�1) =

2

q + q�1
. (3.15)

3.1.2 Odd length N = 2L+ 1

In the case of the odd length none of the above divergences occur and all the matrix elements
of the Hamiltonian are finite. In this case, the total energy "(µ) is always zero because either
[n] of [N � n] is zero. However, the left/right energies are not individually vanishing and
moreover they are purely imaginary and linear with the mode number n,

"
L
(n) = �"

R
(n) =

(�1)
L

2i

8
<

:
� n

N , n = 2k

N�n
N , n = 2k + 1

. (3.16)
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The spectrum of the two left and right Hamiltonian is given in terms of a collection of
M = bN/2c integers µ1, . . . , µM with N � 1 � µ1 > . . . > µM � 1 and two consecutive
such integers are separated by a distance of at least two units, µk+1 > µk + 1,

"
L,R

(µ) =

MX

m=1

✏
L,R

(µm) (3.10)

with

"
L
(n) =

1

q� q�1

⇣
q
N�n

[n]� n

N
[N ]

⌘
, "

R
(n) =

�1

q� q�1

⇣
q
n�N

[n]� n

N
[N ]

⌘
(3.11)

such that the combined Hamiltonian has a real spectrum when q is real or |q| = 1 ,

"(n) =
1

2

�
"
L
(n) + "

R
(n)

�
=

1

2
[n][N � n] . (3.12)

3.1 The long range spin chain at q = i

The spectrum of the long range chain simplifies dramatically when q = i, given that in this
case

[2k] = 0 and [2k + 1] = (�1)
k
. (3.13)

The cases of even and odd length, N = 2L or N = 2L + 1 are qualitatively different and
will be treated separately.

3.1.1 Even length N = 2L

In the case of even length, the matrix elements contain divergences. This is in particular
the case of the potential for site situated on opposite sites of the unit circle

Vj,j+L =
1

(q + q�1)2
, (3.14)

so that it contains a double pole when q ! i. Other potential divergences may occur from
the expressions (3.3) and (3.7) since

f(!
L
) = f(�1) =

2

q + q�1
. (3.15)

3.1.2 Odd length N = 2L+ 1

In the case of the odd length none of the above divergences occur and all the matrix elements
of the Hamiltonian are finite. In this case, the total energy "(µ) is always zero because either
[n] of [N � n] is zero. However, the left/right energies are not individually vanishing and
moreover they are purely imaginary and linear with the mode number n,

"
L
(n) = �"

R
(n) =

(�1)
L

2i

8
<

:
� n

N , n = 2k

N�n
N , n = 2k + 1

. (3.16)
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One of the poles is killed by the factor [N] in the Hamiltonian, but the second has to  
be killed “by hand” by multiplication with

kj = q�j

c = 1� 3

2

�2

⇡(⇡ � �)

� = 0 c = 1

q = ei
⇡

k+1

q = i c = 1 or � 2

[ eHL, eHR] = 0

H =
1

2
( eHL + eHR)

f(u�1) = �f(u)

e[l,m+1] := [el, [el+1, . . . [em�1, em] . . .]] = [[. . . [el, el+1], . . . em�1], em]

eH := lim
q!i

H

q + q�1

[ eH, eHR] = �[ eH, eHL] = 0

"(n) =
1

2
[n][N � n] = 0 . (108)

Řk,k+1(u) = 1� f(u) ek , f(u) =
u� 1

q u� q�1
. (109) Rcheck

� = ±2�

q = ei�

V (z)

� = 1

{z1, z2, . . . , zN} , and {d1, d2, . . . , dN}

[zi, zj] = [di, dj] = 0

S(p2, p1) ⌘
A(p2, p1)

A(p1, p2)
= �eip1+ip2 � 2�eip2 + 1

eip1+ip2 � 2�eip1 + 1

"(p) = �J(2�� eip � e�ip)

Kij zi = zj Kij , (110)

Ki,i+1 dk =

8
><

>:

dk Ki,i+1, k 6= i, i+ 1 ,

di+1 Ki,i+1 � �, k = i ,

di Ki,i+1 + � k = i+ 1 .

(111)

 ! 1

34

Result: a Hamiltonian with finite matrix elements but with identically zero eigenvalues! 

Example: for N=2 is a projector with eigenvalues 0^3, 1

after rescaling, 

e�(u) = e�0(u) + (q � 1) � e�(u) +O(q � 1)2

q⇤ = (t⇤)1/2 = q2

Pjk =
1

2

�
�a
j �

a
k + 1

�

S[j,j+1] =
1

2

�
�x
j �

x
j+1

+ �y
j�

y
j+1

+��z
j�

z
j+1

��
�

HXXZ = J
NX

j=1

1

2

�
�x
j �

x
j+1

+ �y
j�

y
j+1

+��z
j�

z
j+1

��
�

HXXX = J
NX

j=1

(Pj,j+1 � 1)

[HXXX, S
a] = 0 , a = x, y, z

[HXXZ, S
z] = 0

Uqsl(2)

Sa =
1

2

NX

j=1

�a

ej = �h[j,j+1] �
q� q�1

4
(�z

j � �z
j+1

) , (106)

Hopen

XXZ
=

N�1X

j=1

h[j,j+1] +
q� q�1

4
(�z

1
� �z

N) = �
N�1X

j=1

ej (107)

� =
q + q�1

2
q ! 1 �! � ! 1

H =
X

1i<jN

Vij S[i,j]

:=

0

BB@

0 0 0 0
0 q�1 �1 0
0 �1 q 0
0 0 0 0

1

CCA = ei

KEK�1 = q2E , KFK�1 = q�2F , [E,F ] =
K �K�1

q� q�1

E =
NX

j=1

k1 . . . ki�1 �
+

j , F =
NX

j=1

��
i k�1

j+1
. . . k�1

N , K = k1 . . . kN

33

Jordan block at q=i

kj = q�j

c = 1� 3

2

�2

⇡(⇡ � �)

� = 0 c = 1

q = ei
⇡

k+1

q = i c = 1 or � 2

[eHL, eHR] = 0

H =
1

2
(eHL + eHR)

f(u�1) = �f(u)

e[l,m+1] := [el, [el+1, . . . [em�1, em] . . .]] = [[. . . [el, el+1], . . . em�1], em]

eH := lim
q!i

H

q + q�1

[eH, eHR] = �[eH, eHL] = 0

2H =
1

q + q�1
e1

2H(q + q�1) = e1

"(n) =
1

2
[n][N � n] = 0 . (108)

Řk,k+1(u) = 1� f(u) ek , f(u) =
u� 1

q u� q�1
. (109) Rcheck

� = ±2�

q = ei�

V (z)

� = 1

{z1, z2, . . . , zN} , and {d1, d2, . . . , dN}

[zi, zj] = [di, dj] = 0

S(p2, p1) ⌘
A(p2, p1)

A(p1, p2)
= �eip1+ip2 � 2�eip2 + 1

eip1+ip2 � 2�eip1 + 1

"(p) = �J(2�� eip � e�ip)

34

kj = q�j

c = 1� 3

2

�2

⇡(⇡ � �)

� = 0 c = 1

q = ei
⇡

k+1

q = i c = 1 or � 2

[eHL, eHR] = 0

H =
1

2
(eHL + eHR)

f(u�1) = �f(u)

e[l,m+1] := [el, [el+1, . . . [em�1, em] . . .]] = [[. . . [el, el+1], . . . em�1], em]

eH := lim
q!i

H

q + q�1

[eH, eHR] = �[eH, eHL] = 0

2H =
1

q + q�1
e1

2H(q + q�1) = e1

"(n) =
1

2
[n][N � n] = 0 . (108)

Řk,k+1(u) = 1� f(u) ek , f(u) =
u� 1

q u� q�1
. (109) Rcheck

� = ±2�

q = ei�

V (z)

� = 1

{z1, z2, . . . , zN} , and {d1, d2, . . . , dN}

[zi, zj] = [di, dj] = 0

S(p2, p1) ⌘
A(p2, p1)

A(p1, p2)
= �eip1+ip2 � 2�eip2 + 1

eip1+ip2 � 2�eip1 + 1

"(p) = �J(2�� eip � e�ip)
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Th Uglov-Lamers model at q=i 

Algebraic origin of the Jordan blocks at N even: gl(1|1) symmetry

and redefine the gl1|1 generators at each site j as

{f+

j , fj} =(�1)
j ⌘ Ej , Nj = (�1)

j
f
+

j fj , (2.3)

[Nj , fj ] = �fj , [Nj , f
+

j ] = f
+

j .

In these variables we have1

ej =

⇣
f
+

j + f
+

j+1

⌘
(fj + fj+1) (2.4)

= (�1)
j+1

i

h⇣
c
+

j cj+1 + c
+

j+1
cj

⌘
+ i

⇣
c
+

j cj � c
+

j+1
cj+1

⌘i

The global gl1|1 generators are given by

F
+

1
=

NX

j=1

f
+

j , F1 =

NX

j=1

fj , N =

NX

j=1

(�1)
j
f
+

j fj � L , E =

NX

j=1

"j . (2.5)

Together with

F
+

2
=

NX

j<k

f
+

j f
+

k , F2 =

NX

j<k

fjfk , [F
+

2
, F2] = N , (2.6)

they commute with the Temperley-Lieb generators ej , therefore with the Hamiltonian,
HXX = �

PN
j=1

ej . In this section we consider the number of sites to be even, N = 2L, so
that the total central charge E = 0, and for the periodic chain the periodicity conditions
are given by

f
+
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+

1
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which means that

c
+
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L
c
+

1
, c2L+1 ⌘ (�1)

L
c1 , (2.8)

or that the fermions c
+

j , cj are anti-periodic for odd L and periodic for even L, This in
turn implies that the spin operators obey the twisted periodicity boundary conditions

�
±
2L+1

= (�1)
Sz
�
±
1
, (2.9)

where S
z
=

1

2

P
2L
j=1

�
z
j .

Spectrum of the twisted periodic chain vs. the open one, symmetries of the spectrum.
Bethe Ansatz and Fabricius-McCoy strings?

1Notice that both transformations ej ! (�1)ji ej and ej ! �ej are preserving the Temperley-Lieb
algebra for q = i.
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at each site we have gl(1|1) representation with alternating central charge 
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[Gainutdinov, Read, Saleur, 11]

global generators: 

Jordan blocks              indecomposable representations of gl(1|1), at E=0

Experimentally, at larger lengths N=2L, the largest Jordan cell has size L+1

extended symmetry? 

central element

2 The alternating nearest-neighbour spin chain

The spin 1/2 representation of su2 can also be seen as a representation of gl1|1 by identifying
| # ij = |0ij and | " ij = c

+

j |0ij , and supplementing the fermionic operators cj , c
+

j with the
fermion number operator Nj = c

+

j cj and Ej = "j 1 need tildes here? what is "j (or "̃j)
supposed to be?, with commutation relations is it clear that these are the relations of gl1|1?

{c+j , cj} = 1 , [Nj , cj ] = �cj , [Nj , c
+

j ] = c
+

j . (2.1)
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Conclusions and open questions 

• New fermionic long-range integrable model with extended (super)symmetry 

• The odd and even lengths have very different properties  (linear dispersion relation 
vs. Jordan blocks) 

• Closed form expressions for the (regularised) matrix elements 

• Identify the extended symmetry of the model 

• Relation with non-unitary CFTs; Vertex operator construction 

• The q=i limit of the eigenfunctions 

• Other roots of unity: q^3=1 and c=0 CFT;  gl(2|1) symmetry 

• Higher rank? 

• q-Inozemtsev at q=i? 


