

Gaudin Integrability of Conformal Blocks

Volker Schomerus (DESY HH), Les Diablerets, Feb 5, 2023

Based on joint work with I. Buric, M. Isachenkov, S. Harris, P. Liendo, Y. Linke, A. Kaviraj, S. Lacroix, J. Mann, L. Quintavalle, Y. Sobko ...

Conformal Field Theory in d > 2

A modern challenge

Vast zoo of relevant models

3D critical Ising, O(N)-models, SUSY gauge theories in 3D, 4D ... One side of AdS_{d+1}/CFT_d-duality learn about quantum gravity in D > 3 Rich set of non-local observables boundaries, interfaces, Wilson lines ...

Conformal Field Theory in d > 2

A modern challenge

Vast zoo of relevant models

3D critical Ising, O(N)-models, SUSY gauge theories in 3D, 4D ... One side of AdS_{d+1}/CFT_d-duality learn about quantum gravity in D > 3 Rich set of non-local observables boundaries, interfaces, Wilson lines ...

Conformal block expansions:

 $\langle \Phi_1(x_1) \cdots \Phi(D_p) \rangle \sim \sum_{\Lambda} P_{\Lambda} \Psi_{\Lambda}(U)$

constant coefficients P factorize !

Conformal Field Theory in d > 2

A modern challenge

Vast zoo of relevant models

3D critical Ising, O(N)-models, SUSY gauge theories in 3D, 4D ... One side of AdS_{d+1}/CFT_d-duality learn about quantum gravity in D > 3 Rich set of non-local observables boundaries, interfaces, Wilson lines ...

Conformal block expansions:

 $\langle \Phi_1(x_1) \cdots \Phi(D_p) \rangle \sim \sum_{\Lambda} P_{\Lambda} \Psi_{\Lambda}(U)$

constant coefficients P factorize !

NP conformal bootstrap program

exploits crossing symmetry

Goals and Plan

I. What kind of functions are conformal blocks $\Psi_{\Lambda}(U)$ in d > 2 ?

any number N of insertion points, non-local operators ...

II. Can one make conformal bootstrap program work in d > 2 ?

i.p. what so we need to know about the block ?

→ Jeremy's talk

Plan:

- 1. Conformal Field Theory 101 (d>2)
- 2. Conformal blocks: General Theory
- 3. Conformal blocks: Examples

Conformal Field Theory 101

COMPANIAL LEIA THEOLY INT

Conformal Symmetry

The Conformal Group and its subgroups

Euclidean conformal group $G_d = SO(1, d + 1)$ with Lie algebra so(1, d + 1)

Generators: Rotations $so(d) \ni L_{\mu\nu}$ Translations $R^d \ni P_{\mu}$ Dilations $so(1,1) \ni D$ Special CT $R^d \ni K_{\mu}$

There are a number of important subgroups and associated quotients

Stabilizer of a point:	$S_* \cong [SO(1,1) \times SO(d)] \times \mathbb{R}^d$ special CT	$G_d/S_*\cong R^d$
Stabilizer of 2 points:	$S_0 \cong SO(1,1) \times SO(d) \cong K_d$	$G_d/S_0 \cong R^{2d}$
p-dimensional defect:	parallel CTs transverse rotations $S_p \cong SO(1, p + 1) \times SO(d - p)$	$G_d/S_p\cong \mathcal{M}_{d,p}$

 $\dim \mathcal{M}_{d,p}$ = (p+2)(d-p) parameters of conformal defect

Primary Fields

Local and non-local observables

A local primary (= non-derivative) field $\Phi(x)$ of weight Δ & spin λ satisfies

$$\begin{split} [D, \Phi(x)] &= (x^{\nu} \partial_{\nu} + \Delta) \Phi(x) \qquad [L_{\mu\nu}, \Phi(x)] = \left(x_{\nu} \partial_{\mu} - x_{\mu} \partial_{\nu} + \Sigma_{\mu\nu}^{\lambda} \right) \Phi(x) \\ [K_{\mu}, \Phi(x)] &= \left(x^{2} \partial_{\mu} - 2x_{\mu} x^{\nu} \partial_{\nu} - 2x_{\mu} \Delta + 2x^{\nu} \Sigma_{\mu\nu}^{\lambda} \right) \Phi(x) \\ \Delta, \lambda \text{ determine representation } \pi^{\Delta, \lambda} \text{ of } S_{*} \cong [SO(1, 1) \times SO(d)] \times \mathbb{R}^{d} \text{ on } V_{\pi} \end{split}$$

Action $\mathcal{T}_{\alpha}^{\Delta,\lambda}$ of conformal generators on primary field $\Phi(x)$ coincides with action on $\Gamma^{\Delta,\lambda} \cong \{ f: G_d \to V_{\pi} \mid f(gs) = \pi^{\Delta,\lambda}(s)f(g), s \in S_* \}$

 $f(De^{ix^{\mu}P_{\mu}}) = f(e^{ix^{\mu}P_{\mu}}(D + x^{\mu}P_{\mu})) = (-ix^{\mu}\partial_{\mu} - i\Delta)f(e^{ix^{\mu}P_{\mu}}) \ f(e^{ix^{\mu}P_{\mu}}D) = -i\Delta f(e^{ix^{\mu}P_{\mu}}) = -i\Delta f(e^{ix^{\mu}P_{\mu}}D) =$

Primary Fields

Local and non-local observables

A local primary (= non-derivative) field $\Phi(x)$ of weight Δ & spin λ satisfies

$$\begin{split} [D, \Phi(x)] &= (x^{\nu} \partial_{\nu} + \Delta) \Phi(x) \qquad [L_{\mu\nu}, \Phi(x)] = \left(x_{\nu} \partial_{\mu} - x_{\mu} \partial_{\nu} + \Sigma^{\lambda}_{\mu\nu} \right) \Phi(x) \\ [K_{\mu}, \Phi(x)] &= \left(x^{2} \partial_{\mu} - 2x_{\mu} x^{\nu} \partial_{\nu} - 2x_{\mu} \Delta + 2x^{\nu} \Sigma^{\lambda}_{\mu\nu} \right) \Phi(x) \\ \Delta, \lambda \text{ determine representation } \pi^{\Delta, \lambda} \text{ of } S_{*} \cong [SO(1, 1) \times SO(d)] \times \mathbb{R}^{d} \text{ on } V_{\pi} \end{split}$$

Action $\mathcal{T}_{\alpha}^{\Delta,\lambda}$ of conformal generators on primary field $\Phi(x)$ coincides with action on $\Gamma^{\Delta,\lambda} \cong \{ f: G_d \to V_{\pi} \mid f(gs) = \pi^{\Delta,\lambda}(s)f(g), s \in S_* \}$

$$f(De^{i\varpi^{\mu}P_{\mu}}) = f(e^{i\varpi^{\mu}P_{\mu}}(D + x^{\mu}P_{\mu})) = (-ix^{\mu}\partial_{\mu} - i\Delta)f(e^{i\varpi^{\mu}P_{\mu}}) \ f(e^{i\varpi^{\mu}P_{\mu}}D) = -i\Delta f(e^{i\varpi^{\mu}P_{\mu}})$$

Action $\mathcal{T}_{\alpha}^{D_p}$ of conformal generators on defect field $\Phi(D_p)$ coincides with action on $\Gamma^{D_p} \cong \{ f: G_d \to \mathbb{C} \mid f(gs) = f(g), s \in S_p \}$

Ward identities & 3-point functions

Correlation functions of primary fields satisfy conformal Ward identities

$$\sum_{i=1} \mathcal{T}_{\alpha}^{\Delta_{i},\lambda_{i}} \langle \Phi_{1}(x_{1}) \dots \Phi_{N}(x_{N}) \rangle = \mathbf{0}$$

dim SO(1, d + 1) first order diff. Eqs. - not all independent in general -

Determine 3-point functions of scalar primary fields up to one constant

$$\langle \Phi_1(x_1)\Phi_2(x_2)\Phi_3(x_3)\rangle = \frac{C_{123}}{x_{12}^{\Delta_{12}}x_{23}^{\Delta_{23}}x_{13}^{\Delta_{13}}} =: C_{123}$$

Ward identities & 3-point functions

Correlation functions of primary fields satisfy conformal Ward identities

$$\sum_{i=1} \mathcal{T}_{\alpha}^{\Delta_{i},\lambda_{i}} \langle \Phi_{1}(x_{1}) \dots \Phi_{N}(x_{N}) \rangle = \mathbf{0}$$

dim SO(1, d + 1) first order diff. Eqs. - not all independent in general -

Determine 3-point functions of scalar primary fields up to one constant

$$\langle \Phi_1(x_1)\Phi_2(x_2)\Phi_3(x_3)\rangle = \frac{C_{123}}{x_{12}^{\Delta_{12}}x_{23}^{\Delta_{23}}x_{13}^{\Delta_{13}}} =: C_{123}$$

3-point function with single spinning (STT) field similar:

$$\langle \Phi_1(x_1)\Phi_2(x_2)\Phi_3(x)\rangle = C_{12;(\Delta,l)} \qquad \qquad \phi_{\Delta,l}(x)$$

Ward identities & 3-point functions

Correlation functions of primary fields satisfy conformal Ward identities

$$\sum_{i=1} \mathcal{T}_{\alpha}^{\Delta_{i},\lambda_{i}} \langle \Phi_{1}(x_{1}) \dots \Phi_{N}(x_{N}) \rangle = \mathbf{0}$$

dim SO(1, d + 1) first order diff. Eqs. - not all independent in general -

n

Determine 3-point functions of scalar primary fields up to one constant

$$\langle \Phi_1(x_1)\Phi_2(x_2)\Phi_3(x_3)\rangle = \frac{C_{123}}{x_{12}^{\Delta_{12}}x_{23}^{\Delta_{23}}x_{13}^{\Delta_{13}}} =: C_{123}$$

3-point function with single spinning (STT) field similar:

$$\langle \Phi_1(x_1)\Phi_2(x_2)\Phi_3(x)\rangle = C_{12;(\Delta,l)} \qquad \phi_{\Delta,l}(x)$$

Note: STT-STT-scalar 3pt functions are not fixed by conformal symmetry

$$\langle \Phi_{\Delta_1, l_1}(x_1) \Phi_2(x_2) \Phi_{\Delta_3, l_3}(x_3) \rangle = \sum_{n=0}^{\min(l_a, l_b)} C_{(\Delta_1, l_1) 2(\Delta_3, l_3)}^{(n)}$$

Operator product expansions and conformal blocks

In a CFT the operator product of fields possesses a convergent expansion

e.g. scalar primaries:

$$\Phi_{1}(x) \Phi_{2}(y) \sim \sum_{\Phi_{\Delta,l}} C_{12\Phi} \mathcal{D}_{\Delta,l}(x-y,\partial_{y}) \Phi_{\Delta,l}(y)$$
sum over primaries Φ (STT)
 3 -point couplings
 3 -point couplings

$$Ferrara, Grillo,Gatto, Nouvo Cim 2, eq (21)$$

$$\mathcal{D}_{\Delta,0}(x,\partial_{y}) = |x|^{\Delta-\Delta_{1}-\Delta_{2}} [1 + \frac{1}{2} x^{\mu}\partial_{\mu} + \beta(\Delta)x^{\mu}x^{\nu}\partial_{\mu}\partial_{\nu} + \beta'(\Delta)x^{2}\partial^{2} + \cdots]$$

Can be used to compute all N-point functions of primary fields, e.g. N = 4

$$\langle \Phi_{1}(x_{1})\Phi_{2}(x_{2})\Phi_{3}(x_{3})\Phi_{4}(x_{4})\rangle \sim \sum_{\Phi_{\Delta,l}} \mathcal{C}_{12\Phi}\mathcal{C}_{34\Phi} \mathcal{D}_{\Delta,l}(x_{12},\partial_{y}) \underbrace{(\Delta,l)}_{(\Delta,l)}(y,x_{3},x_{4})$$

$$\rightarrow \text{Conformal Block for scalar 4-point functions} \qquad \Psi_{\Delta,l}^{12}(u,v) \qquad u = \frac{x_{12}^{2}x_{24}^{2}}{x_{13}^{2}x_{24}^{2}}$$
$$v = \frac{x_{14}^{2}x_{23}^{2}}{x_{13}^{2}x_{24}^{2}}$$

Bill Sutherland Francesco Calogero Michel Gaudin

Conformal Blocks as Integrable Wave Functions

Multipoint Conformal Blocks

Cross ratios and quantum numbers

Conformal blocks form a `basis' in space of conformal multi-point invariants

Multipoint Conformal Blocks

Cross ratios and quantum numbers

Conformal blocks form a `basis' in space of conformal multi-point invariants

Multipoint Conformal Blocks

Cross ratios and quantum numbers

Conformal blocks form a `basis' in space of conformal multi-point invariants

Gaudin integrable model

Associated w. CFT correlation function [Buric,Lacroix,Mann,Quintavalle,VS]

Lax connection: Introduce following family of matrix valued 1st order DOs

spectral parameter

$$\mathcal{L}(\omega; \omega_J) \equiv \sum_J \frac{T_{\alpha} \mathcal{T}_{\alpha}^{(J)}}{\omega - \omega_J} = \mathcal{L}_{\alpha} T_{\alpha} \underbrace{\mathcal{T}_{\alpha}^{\Delta}, \mathcal{T}_{\alpha}^{D_p}}_{\text{conformal algebra}}$$
generators of conformal algebra

$$\mathcal{H}_q(\omega;\omega_I) = \kappa_q^{lpha_1...lpha_q} \mathcal{L}_{lpha_1} \cdots \mathcal{L}_{lpha_q} + lot$$

Gaudin integrable model

Associated w. CFT correlation function [Buric,Lacroix,Mann,Quintavalle,VS]

Lax connection: Introduce following family of matrix valued 1st order DOs

spectral parameter

$$\mathcal{L}(\omega; \omega_J) \equiv \sum_J \frac{T_{\alpha} \mathcal{T}_{\alpha}^{(J)}}{\omega - \omega_J} = \mathcal{L}_{\alpha} T_{\alpha} \underbrace{\mathcal{T}_{\alpha}^{\Delta}, \mathcal{T}_{\alpha}^{D_p}}_{\text{conformal algebra}}$$
generators of conformal algebra

$$\mathcal{H}_q(\omega;\omega_I) = \kappa_q^{lpha_1...lpha_q} \mathcal{L}_{lpha_1} \cdots \mathcal{L}_{lpha_q} + lot$$

Hamiltonians commute among each other & generate commutant of the generators $\mathcal{T}_{\alpha} = \Sigma \mathcal{T}_{\alpha}^{(J)}$ of conf Ward identities [Feigin,Frenkel,Reshetikhin]

→ Quantum integrable system on reduced state space $(\bigotimes_{I} \Gamma^{\Delta_{J}})^{G}$

Gaudin integrable model

Associated w. CFT correlation function [Buric,Lacroix,Mann,Quintavalle,VS]

Lax connection: Introduce following family of matrix valued 1st order DOs

spectral parameter

$$\mathcal{L}(\omega; \omega_J) \equiv \sum_J \frac{T_{\alpha} \mathcal{T}_{\alpha}^{(J)}}{\omega - \omega_J} = \mathcal{L}_{\alpha} T_{\alpha} \underbrace{\mathcal{T}_{\alpha}^{\Delta}, \mathcal{T}_{\alpha}^{D_p}}_{\text{conformal algebra}}$$
generators of conformal algebra

$$\mathcal{H}_q(\omega;\omega_I) = \kappa_q^{lpha_1...lpha_q} \mathcal{L}_{lpha_1} \cdots \mathcal{L}_{lpha_q} + lot$$

Hamiltonians commute among each other & generate commutant of the generators $\mathcal{T}_{\alpha} = \Sigma \mathcal{T}_{\alpha}^{(J)}$ of conf Ward identities [Feigin,Frenkel,Reshetikhin]

→ Quantum integrable system on reduced state space $(\bigotimes_{I} \Gamma^{\Delta_{I}})^{\mathsf{G}}$

Remark: Also true in presence of defects, i.e. if $T_{\alpha}^{(J)} = T_{\alpha}^{D_p}$ for some J

OPE Channels and Gaudin Limits

Recovering Casimir operators

[Buric, Lacroix, Mann, Quintavalle, VS]

Choice of an OPE channel C determines a set Cas_c of Casimir operators Measure weight and spin of intermediate fields

Demanding $Cas_{\mathcal{C}} \subset Ham(\omega_{J})$ fixes ω_{J} to some limiting configuration $\omega_{J}^{\mathcal{C}} \in \{0, 1, \infty\}$

$$\mathcal{H}_{q}^{[
ho]}(\omega) = \lim_{arepsilon o 0} arepsilon^{qn_{
ho}} \mathcal{H}_{q} \left(\omega = arepsilon^{n_{
ho}} \omega + g_{
ho}(arepsilon), \omega_{j} = f_{J}(arepsilon)
ight) \qquad egin{array}{ll} n_{
ho} = n_{
ho}^{\mathcal{C}} \in \mathbb{N} \ g_{
ho}(w) = g_{
ho}^{\mathcal{C}}(w) & ext{Poly-} \ f_{J}(w) = f_{J}^{\mathcal{C}}(w) & ext{nomial} \ f_{J}(w) = f_{J}^{\mathcal{C}}(w) & ext{nomial} \end{array}$$

The functions $\mathcal{H}_{q}^{[\rho]}(\omega)$, $\rho \in \text{vertices of } \mathcal{C}$, contain a *complete* set of Hamiltonians.

$$\mathcal{H}_{q}^{[\rho]}(\omega) = \sum_{\nu=0}^{q} {q \choose \nu} \frac{D_{\rho}^{q,\nu}}{\omega^{\nu}(1-\omega)^{q-\nu}}$$

 $D_{\rho}^{q,0}$ and $D_{\rho}^{q,q}$ are Casimir differential operators, All others are new vertex differential operators.

Relation with Bending FLows

Comb channel limit

Comb channel Gaudin limit was considered before in context of `bending flows'

[Kapovich, Millson]

Consider N-gons in 3-dimensional space, with edge lengths fixed to be r_i , i = 1, ..., N

 $\mathcal{M}_r = \{ \vec{e}_i \in S_{r_i}^2 \text{ with constraint } \sum_i \vec{e}_i = 0 \}$

Moduli space \mathcal{M}_r is symplectic

$$\vec{e_1}$$
 $\vec{e_N}$

<u>Claims:</u> $h_i = \vec{\mu}_i^2$ form a complete set of Poisson commuting Hamiltonians. They co-incide with the Hamiltonians of SU(2) Gaudin model in the comb channel (homogeneous, caterpillar) limit. [Falqui, Musso]

 $\boldsymbol{\omega}_r = \sum_i \boldsymbol{\omega}(\boldsymbol{S}_{r_i}^2)$

[Chervov, Falqui, Rybnikov]

Conformal Blocks: Examples

Emergence of Calogero-Sutherland models

Gaudin Integrability of Conformal Blocks | Volker Schomerus | Feb 05, 2023

Spinning 4-point correlators

as K-spherical functions on the conformal group

$$\pi_i = \pi^{\Delta_i, l_i}$$

Recall: Reduced 4-site Gaudin is realized on space $(\Gamma^{\pi_1} \otimes \Gamma^{\pi_2} \otimes \Gamma^{\pi_3} \otimes \Gamma^{\pi_4})^G$

<u>**Prop**</u>: Tensor product $\Gamma^{\Delta_1} \otimes \Gamma^{\Delta_2}$ can be realized on the space [Dobrev et al]

$$\Gamma^{\pi_1} \otimes \Gamma^{\pi_2} \cong \Gamma^{\pi_a}_{G/K} \equiv \left\{ f: G_d \to V^{(2)} \mid f(gk) = \pi_a(k^{-1}) f(g)^{\square} \right\}$$

$$\pi_a = \pi_1 \otimes \pi_2 \qquad (\Delta_a, \lambda_a) = (\frac{\Delta_2 - \Delta_1}{2}, \overline{\lambda}_2 \times \lambda_1)$$

Isomorphism is known explicitly [Buric,Isachenkov,VS]

Space of spinning 4-point functions realized on double coset $K_d \setminus G_d / K_d$:

$$(\Gamma^{\pi_1} \otimes \Gamma^{\pi_2} \otimes \Gamma^{\pi_3} \otimes \Gamma^{\pi_4})^G \cong \left(\Gamma^{\pi_a}_{G/K} \otimes \Gamma^{\pi_b}_{G/K}\right)^G \cong \Gamma^{\pi_a,\pi_b}_{K\backslash G/K} \longleftarrow 2\text{-dimensional}$$
$$\equiv \left\{ f: G_d \to V^{(4)} \mid f(k_l g k_r) = \overline{\pi}^a(k_l) \pi^b(k_r^{-1}) f(g) \right\}$$

The space $\Gamma_{K\setminus G/K}^{\pi_a,\pi_b}$ is known as space of K-spherical functions

The Casimir equations

Calogero-Sutherland models for roots system BC₂

Casimir operators on G_d descend to double coset and can be computed, using the Harish-Chandra radial component map. Universal in spin [Buric, VS]

The Casimir equations

Calogero-Sutherland models for roots system BC₂

Casimir operators on G_d descend to double coset and can be computed, using the Harish-Chandra radial component map. Universal [Buric, VS] in spin [Buric, VS]

For scalar fields, the Casimir $D_2^{2,0}$ coincides w. Hamiltonian H_{CS} of hyperbolic Calogero-Sutherland model for root system BC_2 [lsachenkov, VS]

Coordinates: $z_i = \cosh^{-2}\left(\frac{\tau_i}{2}\right), \qquad u = \frac{x_{12}^2 x_{12}}{x_{12}^2 x_{12}}$

$$\begin{split} H_{\rm CS} &= -\sum_{i=1}^2 \frac{\partial^2}{\partial \tau_i^2} + \frac{k_3(k_3-1)}{2} \left[\sinh^{-2} \left(\frac{\tau_1 + \tau_2}{2} \right) + \sinh^{-2} \left(\frac{\tau_1 - \tau_2}{2} \right) \right] \\ &+ \sum_{i=1}^2 \left[k_2(k_2-1) \sinh^{-2}(\tau_i) - \frac{k_1(k_1+2k_2-1)}{4} \cosh^{-2} \left(\frac{\tau_i}{2} \right) \right] \end{split}$$

$$k_1 = \Delta_4 - \Delta_3$$
, $2k_2 = \Delta_2 - \Delta_1 + \Delta_3 - \Delta_4 + 1$, $2k_3 = d - 2$

$$u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2} = z_1 z_2 \qquad v = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2} = (1 - z_1)(1 - z_2)$$

The Casimir equations

Calogero-Sutherland models for roots system BC₂

Casimir operators on G_d descend to double coset and can be computed, using the Harish-Chandra radial component map. Universal [Buric, VS] in spin

For scalar fields, the Casimir $D_2^{2,0}$ coincides w. Hamiltonian H_{CS} of hyperbolic Calogero-Sutherland model for root system BC_2 [lsachenkov, VS]

$$\begin{split} H_{\rm CS} &= -\sum_{i=1}^2 \frac{\partial^2}{\partial \tau_i^2} + \frac{k_3(k_3-1)}{2} \left[\sinh^{-2} \left(\frac{\tau_1 + \tau_2}{2} \right) + \sinh^{-2} \left(\frac{\tau_1 - \tau_2}{2} \right) \right] \\ &+ \sum_{i=1}^2 \left[k_2(k_2 - 1) \sinh^{-2}(\tau_i) - \frac{k_1(k_1 + 2k_2 - 1)}{4} \cosh^{-2} \left(\frac{\tau_i}{2} \right) \right] \end{split}$$

$$k_1=\Delta_4-\Delta_3$$
 , $2k_2=\Delta_2-\Delta_1+\Delta_3-\Delta_4+1$, $2k_3=d-2$

Coordinates:
$$z_i = \cosh^{-2}\left(\frac{\tau_i}{2}\right)$$
, $u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2} = z_1 z_2$ $v = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2} = (1 - z_1)(1 - z_2)$

<u>Remark</u>: 4-site Gaudin = elliptic BC_2 Calogero-Sutherland = Inozemtsev degenerates to hyperbolic BC_2 Calogero-Sutherland in all OPE channels.

Single Variable Vertex Systems

Lemniscatic elliptic Calogero-Moser-Sutherland model

For vertices contributing a single cross ratio we identified the associated vertex differential operators with the 4th order Hamiltonian of an integrable lemniscatic elliptic Calogero-Moser-Sutherland model. [Etingof, Felder, Ma, Veselov]

Calogero-Sutherland wave functions

Scattering problem for CS particles in a Weyl chamber solved [Heckman, Opdam]

→ Heckman-Opdam hypergeometry

Conformal partial waves live on a strip

→ Conformal hypergeometry

[Isachenkov, VS]

\rightarrow Conformal hypergeometry

[Isachenkov, VS]

No solution theory for vertex systems

Separation of variables [SOV] for our Gaudin limits \rightarrow factorization of blocks

Calogero-Sutherland wave functions

Scattering problem for CS particles in a Weyl chamber solved [Heckman, Opdam] → Heckman-Opdam hypergeometry Conformal partial waves live on a strip

Kinematical LEGO = SOV

SOV for 1D CFT blocks well understood & completely explicit in OPE limit separated variable: momentum; OPE limit of Gaudin: $\phi^N(p) \sim {}_2F_1(p)$

Conclusion and Outlook

Conformal Blocks are wave functions of quantum integrable systems

of Gaudin-type, for limiting configuration of ω_I

Even if wave functions (= blocks) have not been constructed beyond some special cases (yet \rightarrow SOV), one can do analytical bootstrap