Correlations for the XYZ spin chain and Painlevé VI

Hjalmar Rosengren

Chalmers University of Technology and University of Gothenburg
with Christian Hagendorf, Université Catholique de Louvain arXiv:2208.13533
(1) UNIVERSITY OF GOTHENBURG

A frog's perspective

Unverstry of сотнимиurg

(1) $X Y Z$ chain

(2) Painlevé VI equation

(3) Method: Baxter $T Q$-equation

4 Manin's three cases
(5) Outlook

XYZ spin chain

Chain of L spin $1 / 2$ particles.
Hamiltonian

$$
H^{\mathrm{XYZ}}=-\frac{1}{2} \sum_{j=1}^{L}\left(J_{x} \sigma_{j}^{x} \sigma_{j+1}^{x}+J_{y} \sigma_{j}^{y} \sigma_{j+1}^{y}+J_{z} \sigma_{j}^{z} \sigma_{j+1}^{z}\right) .
$$

J_{x}, J_{y}, J_{z} (real) anisotropy parameters.
Periodic boundary conditions: $\sigma_{L+1}^{x}=\sigma_{1}^{x}$ etc.

Combinatorial/supersymmetric case

We consider the combinatorial or supersymmetric case

$$
J_{x} J_{y}+J_{x} J_{z}+J_{y} J_{z}=0 .
$$

Generalizes XXZ spin chain with $\Delta=-1 / 2, q=e^{2 \pi i / 3}$:

$$
J_{x}=J_{y}=1, \quad J_{z}=-\frac{1}{2}=\Delta=\frac{q+q^{-1}}{2} .
$$

Very special case - solvability already at finite lattice.

Combinatorial/supersymmetric case

We consider the combinatorial or supersymmetric case

$$
J_{x} J_{y}+J_{x} J_{z}+J_{y} J_{z}=0 .
$$

Generalizes XXZ spin chain with $\Delta=-1 / 2, q=e^{2 \pi i / 3}$:

$$
J_{x}=J_{y}=1, \quad J_{z}=-\frac{1}{2}=\Delta=\frac{q+q^{-1}}{2} .
$$

Very special case - solvability already at finite lattice.

Combinatorial/supersymmetric case

We consider the combinatorial or supersymmetric case

$$
J_{x} J_{y}+J_{x} J_{z}+J_{y} J_{z}=0 .
$$

Generalizes XXZ spin chain with $\Delta=-1 / 2, q=e^{2 \pi i / 3}$:

$$
J_{x}=J_{y}=1, \quad J_{z}=-\frac{1}{2}=\Delta=\frac{q+q^{-1}}{2} .
$$

Very special case - solvability already at finite lattice.

Combinatorics

$$
J_{x} J_{y}+J_{x} J_{z}+J_{y} J_{z}=0
$$

Why combinatorial?

- XXZ model with $\Delta=-1 / 2$ has deep connections to combinatorics of alternating sign matrices and plane partitions (Razumov-Stroganov etc.).
- General XYZ case has
connections to three-colourings
(R. 2011, Hietala 2020).

Combinatorics

$$
J_{x} J_{y}+J_{x} J_{z}+J_{y} J_{z}=0
$$

Why combinatorial?

- XXZ model with $\Delta=-1 / 2$ has deep connections to combinatorics of alternating sign matrices and plane partitions (Razumov-Stroganov etc.).
- General XYZ case has connections to three-colourings (R. 2011, Hietala 2020).

Supersymmetry

$$
J_{x} J_{y}+J_{x} J_{z}+J_{y} J_{z}=0
$$

Why supersymmetric?

- Scaling limit to massive sine-Gordon theory. Under condition above it has $\mathcal{N}=2$ supersymmetry (Saleur \& Warner 1993).
- Supersymmetry on finite lattice (Fendley \& Hagendorf 2012):

(on subspace). Q

Supersymmetry

$$
J_{x} J_{y}+J_{x} J_{z}+J_{y} J_{z}=0
$$

Why supersymmetric?

- Scaling limit to massive sine-Gordon theory. Under condition above it has $\mathcal{N}=2$ supersymmetry (Saleur \& Warner 1993).
- Supersymmetry on finite lattice (Fendley \& Hagendorf 2012):

$$
H^{\mathrm{XYZ}}=\text { Const }+Q Q^{\dagger}+Q^{\dagger} Q
$$

(on subspace). $Q: V^{\otimes L} \rightarrow V^{\otimes(L+1)}, Q^{2}=0$.

The importance of being odd

Baxter (1972) computed the ground state energy (lowest eigenvalue of H^{XYZ}) as $L \rightarrow \infty$.

When $J_{x} J_{y}+J_{x} J_{z}+J_{y} J_{z}=0$ and $J_{x}+J_{y}+J_{z}>0$,

$$
E_{0} \sim-\frac{L}{2}\left(J_{x}+J_{y}+J_{z}\right), \quad L \rightarrow \infty .
$$

Stroganov (2001) conjectured that if L is odd then

$$
E_{0}=-\frac{I}{2}\left(J_{x}+J_{y}+J_{z}\right)
$$

Proved by Hagendorf and Liénardy (2018) using supersymmetry.

$$
H^{\mathrm{XYZ}}=E_{0}+Q Q^{\dagger}+Q^{\dagger} Q
$$

The importance of being odd

Baxter (1972) computed the ground state energy (lowest eigenvalue of H^{XYZ}) as $L \rightarrow \infty$.

When $J_{x} J_{y}+J_{x} J_{z}+J_{y} J_{z}=0$ and $J_{x}+J_{y}+J_{z}>0$,

$$
E_{0} \sim-\frac{L}{2}\left(J_{x}+J_{y}+J_{z}\right), \quad L \rightarrow \infty
$$

Stroganov (2001) conjectured that if L is odd then

Proved by Hagendorf and Liénardy (2018) using
supersymmetry.

The importance of being odd

Baxter (1972) computed the ground state energy (lowest eigenvalue of H^{XYZ}) as $L \rightarrow \infty$.

When $J_{x} J_{y}+J_{x} J_{z}+J_{y} J_{z}=0$ and $J_{x}+J_{y}+J_{z}>0$,

$$
E_{0} \sim-\frac{L}{2}\left(J_{x}+J_{y}+J_{z}\right), \quad L \rightarrow \infty
$$

Stroganov (2001) conjectured that if L is odd then

$$
E_{0}=-\frac{L}{2}\left(J_{x}+J_{y}+J_{z}\right)
$$

Proved by Hagendorf and Liénardy (2018) using supersymmetry.

$$
H^{\mathrm{XYZ}}=E_{0}+Q Q^{\dagger}+Q^{\dagger} Q .
$$

The importance of being odd

Baxter (1972) computed the ground state energy (lowest eigenvalue of H^{XYZ}) as $L \rightarrow \infty$.

When $J_{x} J_{y}+J_{x} J_{z}+J_{y} J_{z}=0$ and $J_{x}+J_{y}+J_{z}>0$,

$$
E_{0} \sim-\frac{L}{2}\left(J_{x}+J_{y}+J_{z}\right), \quad L \rightarrow \infty
$$

Stroganov (2001) conjectured that if L is odd then

$$
E_{0}=-\frac{L}{2}\left(J_{x}+J_{y}+J_{z}\right)
$$

Proved by Hagendorf and Liénardy (2018) using supersymmetry.

$$
H^{\mathrm{XYZ}}=E_{0}+Q Q^{\dagger}+Q^{\dagger} Q
$$

Correlation functions

We will assume

- Periodic boundary
- $J_{x} J_{y}+J_{x} J_{z}+J_{y} J_{z}=0, \quad J_{x}+J_{y}+J_{z}>0$,
- $L=2 n+1$ odd
$|\Psi\rangle$ ground state with even number of up spins. Nearest neighbour correlations (for ground state)

Computed for XXZ chain $\left(J_{x}=J_{y}=1, J_{z}=-1 / 2\right)$ by Stroganov (2001):

Correlation functions

We will assume

- Periodic boundary
- $J_{x} J_{y}+J_{x} J_{z}+J_{y} J_{z}=0, \quad J_{x}+J_{y}+J_{z}>0$,
- $L=2 n+1$ odd
$|\Psi\rangle$ ground state with even number of up spins. Nearest neighbour correlations (for ground state)

$$
C^{x}=\frac{\langle\Psi| \sigma_{j}^{x} \sigma_{j+1}^{x}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}, \quad C^{y}=\cdots, \quad C^{z}=\cdots
$$

Computed for XXZ chain $\left(J_{x}=J_{y}=1, J_{z}=-1 / 2\right)$ by Stroganov (2001):

Correlation functions

We will assume

- Periodic boundary
- $J_{x} J_{y}+J_{x} J_{z}+J_{y} J_{z}=0, \quad J_{x}+J_{y}+J_{z}>0$,
- $L=2 n+1$ odd
$|\Psi\rangle$ ground state with even number of up spins.
Nearest neighbour correlations (for ground state)

$$
C^{x}=\frac{\langle\Psi| \sigma_{j}^{x} \sigma_{j+1}^{x}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}, \quad C^{y}=\cdots, \quad C^{z}=\cdots
$$

Computed for XXZ chain ($J_{x}=J_{y}=1, J_{z}=-1 / 2$) by Stroganov (2001):

$$
C^{x}=C^{y}=\frac{5}{8}+\frac{3}{8 L^{2}}, \quad C^{z}=-\frac{1}{2}+\frac{3}{2 L^{2}}
$$

Preliminary result

For $a \in\{x, y, z\}$ we can write

$$
C^{a}=1+\frac{J_{x} J_{y} J_{z}}{J_{a}^{2}\left(J_{x}+J_{y}+J_{z}\right)} f_{n}
$$

where f_{n} is a rational function of $Z=\left(J_{x}+J_{y}+J_{z}\right)^{3} / J_{x} J_{y} J_{z}$.

Preliminary result

For $a \in\{x, y, z\}$ we can write

$$
C^{a}=1+\frac{J_{x} J_{y} J_{z}}{J_{a}^{2}\left(J_{x}+J_{y}+J_{z}\right)} f_{n}
$$

where f_{n} is a rational function of $Z=\left(J_{x}+J_{y}+J_{z}\right)^{3} / J_{x} J_{y} J_{z}$.

$$
\begin{aligned}
& f_{0}=0, \quad f_{1}=1, \quad f_{2}=\frac{Z+27}{Z+25} \\
& f_{3}=\frac{(Z+24)(Z+27)}{(Z+21)(Z+28)} \\
& f_{4}=\frac{Z^{3}+74 Z^{2}+1807 Z+14520}{Z^{3}+72 Z^{2}+1701 Z+13068}, \ldots
\end{aligned}
$$

Polynomials s_{n} and \bar{s}_{n}
We express f_{n} in terms of the polynomials s_{n} and \bar{s}_{n} of Bazhanov and Mangazeev (2005, 2010).

Tau functions of Painlevé VI, related to Q-operator eigenvalue (see below).

Toda-type recursions

Polynomials s_{n} and \bar{s}_{n}

We express f_{n} in terms of the polynomials s_{n} and \bar{s}_{n} of Bazhanov and Mangazeev (2005, 2010).

Tau functions of Painlevé VI , related to Q-operator eigenvalue (see below).

Toda-type recursions

Polynomials s_{n} and \bar{s}_{n}

We express f_{n} in terms of the polynomials s_{n} and \bar{s}_{n} of Bazhanov and Mangazeev (2005, 2010).

Tau functions of Painlevé VI, related to Q-operator eigenvalue (see below).

Toda-type recursions

$$
\begin{gathered}
8(2 n+1)^{2} s_{n+1} s_{n-1}+2 z(z-1)(9 z-1)^{2}\left(s_{n}^{\prime \prime} s_{n}-\left(s_{n}^{\prime}\right)^{2}\right)+2(3 z-1)^{2}(9 z-1) s_{n} s_{n}^{\prime} \\
-(4(3 n+1)(3 n+2)+n(5 n+3)(9 z-1)) s_{n}^{2}=0
\end{gathered}
$$

Polynomials s_{n} and \bar{s}_{n}

We express f_{n} in terms of the polynomials s_{n} and \bar{s}_{n} of Bazhanov and Mangazeev (2005, 2010).

Tau functions of Painlevé VI, related to Q-operator eigenvalue (see below).

Toda-type recursions

$$
\begin{gathered}
8(2 n+1)^{2} s_{n+1} s_{n-1}+2 z(z-1)(9 z-1)^{2}\left(s_{n}^{\prime \prime} s_{n}-\left(s_{n}^{\prime}\right)^{2}\right)+2(3 z-1)^{2}(9 z-1) s_{n} s_{n}^{\prime} \\
-(4(3 n+1)(3 n+2)+n(5 n+3)(9 z-1)) s_{n}^{2}=0
\end{gathered}
$$

$$
\begin{aligned}
\ldots, s_{-2} & =\frac{3+9 z}{4}, & s_{-1} & =1,
\end{aligned} \quad s_{0}=0,1+z, ~ s_{3}=1+3 z+4 z^{2}, \ldots .
$$

Main result

Parametrize the chain as

$$
J_{x}=1+\zeta, \quad J_{y}=1-\zeta, \quad J_{z}=\frac{\zeta^{2}-1}{2} .
$$

Then

We prove this assuming a technical condition (see below).

Main result

Parametrize the chain as

$$
J_{x}=1+\zeta, \quad J_{y}=1-\zeta, \quad J_{z}=\frac{\zeta^{2}-1}{2} .
$$

Then

$$
f_{n}=\frac{\left(\zeta^{2}+3\right)\left(\zeta^{2}-3\right)}{\left(\zeta^{2}-1\right)^{2}}-\frac{2 \zeta^{2}\left(\zeta^{2}+3\right)}{(2 n+1)^{2}\left(\zeta^{2}-1\right)^{2}} \frac{\bar{s}_{n}\left(\zeta^{-2}\right) \bar{s}_{-n-1}\left(\zeta^{-2}\right)}{s_{n}\left(\zeta^{-2}\right) s_{-n-1}\left(\zeta^{-2}\right)} .
$$

We prove this assuming a technical condition (see below).

Infinite lattice limit

Baxter's formula for the free energy implies

$$
f_{\infty}=\lim _{n \rightarrow \infty} f_{n}= \begin{cases}\frac{\left(\zeta^{2}+3\right)\left(\zeta^{2}-3\right)}{\left(\zeta^{2}-1\right)^{2}}, & |\zeta| \geq 3 \\ -\frac{\left(\zeta^{2}+3\right)\left(\zeta^{2}+6 \zeta-3\right)}{8(\zeta-1)^{2}}, & -3<\zeta<0 \\ -\frac{\left(\zeta^{2}+3\right)\left(\zeta^{2}-6 \zeta-3\right)}{8(\zeta+1)^{2}}, & 0<\zeta<3\end{cases}
$$

The term with tau functions gives finite length correction.
$f_{\infty}^{(3)}$ jumps at the XXZ points $\zeta=0$ and $\zeta= \pm 3$.

Infinite lattice limit

Baxter's formula for the free energy implies

$$
f_{\infty}=\lim _{n \rightarrow \infty} f_{n}= \begin{cases}\frac{\left(\zeta^{2}+3\right)\left(\zeta^{2}-3\right)}{\left(\zeta^{2}-1\right)^{2}}, & |\zeta| \geq 3, \\ -\frac{\left(\zeta^{2}+3\right)\left(\zeta^{2}+6 \zeta-3\right)}{8(\zeta-1)^{2}}, & -3<\zeta<0, \\ -\frac{\left(\zeta^{2}+3\right)\left(\zeta^{2}-6 \zeta-3\right)}{8(\zeta+1)^{2}}, & 0<\zeta<3 .\end{cases}
$$

The term with tau functions gives finite length correction.
$f_{\infty}^{(3)}$ jumps at the XXZ points $\zeta=0$ and $\zeta= \pm 3$.

Finite versus infinite chain

From bottom to top: f_{2}, f_{3}, f_{4} (length 5, 7, 9), f_{∞}.
university of gothenburg

(1) $X Y Z$ chain

(2) Painlevé VI equation

(3) Method: Baxter $T Q$-equation

(4) Manin's three cases
(5) Outlook

Painlevé VI: elliptic form

PVI is the most general 2nd order ODE, all of whose movable singularities are poles.

Elliptic form:

α_{j} parameters, \wp Weierstrass' function with periods $1,2 \pi$ it and half-periods γ_{j}.

Painlevé VI: elliptic form

PVI is the most general 2nd order ODE, all of whose movable singularities are poles.

Elliptic form:

$$
\frac{d^{2} q}{d t^{2}}=\sum_{j=0}^{3} \alpha_{j} \wp^{\prime}\left(q-\gamma_{j} \mid 2 \pi \mathrm{i} t\right)
$$

α_{j} parameters, \wp Weierstrass' function with periods $1,2 \pi$ it and half-periods γ_{j}.

Painlevé VI: algebraic form

$$
\frac{d^{2} q}{d t^{2}}=\sum_{j=0}^{3} \alpha_{j} \wp^{\prime}\left(q-\gamma_{j} \mid 2 \pi i t\right)
$$

$$
q \in \mathbb{C} /(\mathbb{Z}+2 \pi \mathrm{it} \mathbb{Z}) \simeq \mathbb{C}[x, y] /\left(y^{2}=x(x-1)(x-s)\right) .
$$

Change of variable $(q, t) \mapsto(x, s)$ gives algebraic form of PVI:

Painlevé VI: algebraic form

$$
\frac{d^{2} q}{d t^{2}}=\sum_{j=0}^{3} \alpha_{j} \wp^{\prime}\left(q-\gamma_{j} \mid 2 \pi \mathrm{i} t\right)
$$

$$
q \in \mathbb{C} /(\mathbb{Z}+2 \pi \mathrm{i} t \mathbb{Z}) \simeq \mathbb{C}[x, y] /\left(y^{2}=x(x-1)(x-s)\right)
$$

Change of variable $(q, t) \mapsto(x, s)$ gives algebraic form of PVI:

$$
\begin{aligned}
& \quad \frac{d^{2} x}{d s^{2}}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{x-1}+\frac{1}{x-s}\right)\left(\frac{d x}{d s}\right)^{2}-\left(\frac{1}{s}+\frac{1}{s-1}+\frac{1}{x-s}\right) \frac{d x}{d s} \\
& +\frac{x(x-1)(x-s)}{s^{2}(s-1)^{2}}\left(\alpha_{0}-\alpha_{1} \frac{s}{x^{2}}+\alpha_{2} \frac{s-1}{(x-1)^{2}}+\left(\frac{1}{2}-\alpha_{3}\right) \frac{s(s-1)}{(x-s)^{2}}\right) .
\end{aligned}
$$

Hamiltonian form of PVI

Painlevé VI is equivalent to non-stationary Hamiltonian system (Malmquist 1923, Manin 1998).

$$
\frac{d q}{d t}=\frac{\partial H}{\partial p}, \quad \frac{d p}{d t}=-\frac{\partial H}{\partial q}
$$

where

$$
H(p, q, t)=\frac{p^{2}}{2}-V(q, t)
$$

with

$$
V(q, t)=\sum_{j=1}^{4} \alpha_{j} \wp\left(q-\gamma_{j} \mid 2 \pi \mathrm{i} t\right)
$$

Darboux-Inozemtsev-Treibich-Verdier-... potential.

Picard solutions

$$
\frac{d^{2} q}{d t^{2}}=\sum_{j=0}^{3} \alpha_{j} \wp^{\prime}\left(q-\gamma_{j} \mid 2 \pi \mathrm{i} t\right)
$$

When $\alpha_{0}=\cdots=\alpha_{3}=0$, the solution is \ldots

Applying Bäcklund transformations

gives Picard class solutions with $\tilde{\alpha}_{j}=n_{j}^{2} / 2, n_{j} \in \mathbb{Z}$.

Picard solutions

$$
\frac{d^{2} q}{d t^{2}}=\sum_{j=0}^{3} \alpha_{j} \wp^{\prime}\left(q-\gamma_{j} \mid 2 \pi i t\right)
$$

When $\alpha_{0}=\cdots=\alpha_{3}=0$, the solution is $\ldots q=C_{1} t+C_{2}$. Applying Bäcklund transformations
gives Picard class solutions with $\tilde{\alpha}_{j}=n_{j}^{2} / 2, n_{j} \in \mathbb{Z}$.

Picard solutions

$$
\frac{d^{2} q}{d t^{2}}=\sum_{j=0}^{3} \alpha_{j} \wp^{\prime}\left(q-\gamma_{j} \mid 2 \pi \mathrm{i} t\right)
$$

When $\alpha_{0}=\cdots=\alpha_{3}=0$, the solution is $\ldots q=C_{1} t+C_{2}$.
Applying Bäcklund transformations

$$
\left(q, p, \alpha_{0}, \ldots, \alpha_{3}\right) \mapsto\left(\tilde{q}, \tilde{p}, \tilde{\alpha}_{0}, \ldots, \tilde{\alpha}_{3}\right)
$$

gives Picard class solutions with $\tilde{\alpha}_{j}=n_{j}^{2} / 2, n_{j} \in \mathbb{Z}$.

Tau functions

A tau function is a solution to

$$
\frac{\tau^{\prime}(t)}{\tau(t)}=H(p(t), q(t), t)
$$

where (p, q) solves PVI.

The polynomials s_{n} and \bar{s}_{n} can be identified with tau functions, corresponding to algebraic solutions in the Picard class.

The parameters a_{j} are

Tau functions

A tau function is a solution to

$$
\frac{\tau^{\prime}(t)}{\tau(t)}=H(p(t), q(t), t)
$$

where (p, q) solves PVI.
The polynomials s_{n} and \bar{s}_{n} can be identified with tau functions, corresponding to algebraic solutions in the Picard class.

The parameters α_{j} are

$$
\left(\frac{n^{2}}{2}, \frac{n^{2}}{2}, 0,0\right) \quad \text { for } s_{n}, \quad\left(\frac{n^{2}}{2}, \frac{n^{2}}{2}, \frac{1}{2}, \frac{1}{2}\right) \quad \text { for } \bar{s}_{n} .
$$

Correlation functions and Painlevé VI

What does
$f_{n}=\frac{\left(\zeta^{2}+3\right)\left(\zeta^{2}-3\right)}{\left(\zeta^{2}-1\right)^{2}}-\frac{2 \zeta^{2}\left(\zeta^{2}+3\right)}{(2 n+1)^{2}\left(\zeta^{2}-1\right)^{2}} \frac{\bar{s}_{n}\left(\zeta^{-2}\right) \bar{s}_{-n-1}\left(\zeta^{-2}\right)}{s_{n}\left(\zeta^{-2}\right) s_{-n-1}\left(\zeta^{-2}\right)}$
mean for PVI?
It is essentially a PVI Hamiltonian with parameters

evaluated at a solution to PVI with parameters

Correlation functions and Painlevé VI

What does

$$
f_{n}=\frac{\left(\zeta^{2}+3\right)\left(\zeta^{2}-3\right)}{\left(\zeta^{2}-1\right)^{2}}-\frac{2 \zeta^{2}\left(\zeta^{2}+3\right)}{(2 n+1)^{2}\left(\zeta^{2}-1\right)^{2}} \frac{\bar{s}_{n}\left(\zeta^{-2}\right) \bar{s}_{-n-1}\left(\zeta^{-2}\right)}{s_{n}\left(\zeta^{-2}\right) s_{-n-1}\left(\zeta^{-2}\right)}
$$

mean for PVI?
It is essentially a PVI Hamiltonian with parameters

$$
\left(\frac{(n+1 / 2)^{2}}{2}, \frac{(n+1 / 2)^{2}}{2}, 0,0\right)
$$

evaluated at a solution to PVI with parameters

$$
\left(\frac{n^{2}}{2}, \frac{n^{2}}{2}, 0,0\right) .
$$

unverstry of сотнимвurg
(1) $X Y Z$ chain
(2) Painlevé VI equation
(3) Method: Baxter $T Q$-equation
(4) Manin's three cases
(5) Outlook

Transfer matrix

Parametrize $H^{\mathrm{XYZ}}=H^{\mathrm{XYZ}}(\eta, \tau)$ by elliptic functions.
Supersymmetric case is $\eta=\pi / 3$.
Transfer matrices of eight-vertex model.
One-parameter family $\mathbf{T}(u)=\mathbf{T}(u, \eta, \tau)$ commuting with H^{XYZ}.
H^{XYZ} is essentially $\left.\mathbf{T}^{-1}(u) \mathbf{T}^{\prime}(u)\right|_{u=\eta}$.
Can extend Ψ to η near $\pi / 3$ and write

$$
\mathbf{T}(u) \Psi=t(u) \Psi, \quad H^{\mathrm{XYZ}} \Psi=\varepsilon \Psi
$$

where ε is essentially $t^{\prime}(u) /\left.t(u)\right|_{u=\eta}$.

Transfer matrix

Parametrize $H^{\mathrm{XYZ}}=H^{\mathrm{XYZ}}(\eta, \tau)$ by elliptic functions.
Supersymmetric case is $\eta=\pi / 3$.
Transfer matrices of eight-vertex model.
One-parameter family $\mathbf{T}(u)=\mathbf{T}(u, \eta, \tau)$ commuting with H^{XYZ}. H^{XYZ} is essentially $\left.\mathbf{T}^{-1}(u) \mathbf{T}^{\prime}(u)\right|_{u=\eta}$.
Can extend Ψ to η near $\pi / 3$ and write

$$
\mathbf{T}(u) \Psi=t(u) \Psi, \quad H^{\mathrm{XYZ}} \Psi=\varepsilon \Psi
$$

where ε is essentially $t^{\prime}(u) /\left.t(u)\right|_{u=\eta^{\prime}}$

Transfer matrix

Parametrize $H^{\mathrm{XYZ}}=H^{\mathrm{XYZ}}(\eta, \tau)$ by elliptic functions.
Supersymmetric case is $\eta=\pi / 3$.
Transfer matrices of eight-vertex model.
One-parameter family $\mathbf{T}(u)=\mathbf{T}(u, \eta, \tau)$ commuting with H^{XYZ}. H^{XYZ} is essentially $\left.\mathbf{T}^{-1}(u) \mathbf{T}^{\prime}(u)\right|_{u=\eta}$ 。
Can extend Ψ to η near $\pi / 3$ and write

$$
\mathbf{T}(u) \Psi=t(u) \Psi, \quad H^{\mathrm{XYZ}} \Psi=\varepsilon \Psi
$$

where ε is essentially $t^{\prime}(u) /\left.t(u)\right|_{u=\eta}$.

Correlation functions and transfer matrix eigenvalue

$$
H^{\mathrm{XYZ}}=-\frac{1}{2} \sum_{j=1}^{L}\left(J_{x} \sigma_{j}^{x} \sigma_{j+1}^{x}+J_{y} \sigma_{j}^{y} \sigma_{j+1}^{y}+J_{z} \sigma_{j}^{z} \sigma_{j+1}^{z}\right)
$$

Gives

$$
\varepsilon=\left\langle H^{\mathrm{XYZ}}\right\rangle=-\frac{L}{2}\left(J_{x} C^{x}+J_{y} C^{y}+J_{z} C^{z}\right)
$$

Taking derivatives in η and τ, these will not hit C^{x}, C^{y}, C^{z} (Hellmann-Feynman theorem).
Gives a system of three equations for the three correlations.
Solution can be expressed in terms of the quantity
$t t_{u \eta}-\left.t_{u} t_{\eta}\right|_{u=\eta=\pi / 3}$.
The η-derivatives are problematic!

Correlation functions and transfer matrix eigenvalue

$$
H^{\mathrm{XYZ}}=-\frac{1}{2} \sum_{j=1}^{L}\left(J_{x} \sigma_{j}^{x} \sigma_{j+1}^{x}+J_{y} \sigma_{j}^{y} \sigma_{j+1}^{y}+J_{z} \sigma_{j}^{z} \sigma_{j+1}^{z}\right)
$$

Gives

$$
\varepsilon=\left\langle H^{\mathrm{XYZ}}\right\rangle=-\frac{L}{2}\left(J_{x} C^{x}+J_{y} C^{y}+J_{z} C^{z}\right)
$$

Taking derivatives in η and τ, these will not hit C^{x}, C^{y}, C^{z} (Hellmann-Feynman theorem).
Gives a system of three equations for the three correlations.
Solution can be expressed in terms of the quantity

The η-derivatives are problematic!

Correlation functions and transfer matrix eigenvalue

$$
H^{\mathrm{XYZ}}=-\frac{1}{2} \sum_{j=1}^{L}\left(J_{x} \sigma_{j}^{x} \sigma_{j+1}^{x}+J_{y} \sigma_{j}^{y} \sigma_{j+1}^{y}+J_{z} \sigma_{j}^{z} \sigma_{j+1}^{z}\right)
$$

Gives

$$
\varepsilon=\left\langle H^{\mathrm{XYZ}}\right\rangle=-\frac{L}{2}\left(J_{x} C^{x}+J_{y} C^{y}+J_{z} C^{z}\right)
$$

Taking derivatives in η and τ, these will not hit C^{x}, C^{y}, C^{z} (Hellmann-Feynman theorem).
Gives a system of three equations for the three correlations.
Solution can be expressed in terms of the quantity
$t t_{u \eta}-\left.t_{u} t_{\eta}\right|_{u=\eta=\pi / 3}$.
The η-derivatives are problematic!

Q-operator

A Q-operator $\mathbf{Q}(u)=\mathbf{Q}(u, \eta, \tau)$ should satisfy $[\mathbf{Q}(u), \mathbf{T}(v)]=0$,

$$
\mathbf{T}(u) \mathbf{Q}(u)=\phi(u-\eta) \mathbf{Q}(u+2 \eta)+\phi(u+\eta) \mathbf{Q}(u-2 \eta),
$$

where $\phi(u)=\theta_{1}(u \mid \tau)^{L}$ (Jacobi theta function).
If $\mathbf{Q}(u) \Psi=q(u) \Psi$ we get
$t(u) q(u)=\phi(u-\eta) q(u+2 \eta)+\phi(u+\eta) q(u-2 \eta)$.
Using this tq-relation we can express correlations in terms of q.

Q-operator

A Q-operator $\mathbf{Q}(u)=\mathbf{Q}(u, \eta, \tau)$ should satisfy $[\mathbf{Q}(u), \mathbf{T}(v)]=0$,

$$
\mathbf{T}(u) \mathbf{Q}(u)=\phi(u-\eta) \mathbf{Q}(u+2 \eta)+\phi(u+\eta) \mathbf{Q}(u-2 \eta),
$$

where $\phi(u)=\theta_{1}(u \mid \tau)^{L}$ (Jacobi theta function).
If $\mathbf{Q}(u) \Psi=q(u) \Psi$ we get

$$
t(u) q(u)=\phi(u-\eta) q(u+2 \eta)+\phi(u+\eta) q(u-2 \eta) .
$$

Using this $t q$-relation we can express correlations in terms of q.

Problem

We need to differentiate

$$
t(u) q(u)=\phi(u-\eta) q(u+\eta)+\phi(u+\eta) q(u-2 \eta)
$$

in η at $\eta=\pi / 3$.
Problem: Known constructions of Q-operators either work for $\eta \neq \pi / 3$ (Baxter) or $\eta=\pi / 3$ (Fabricius, Roan).

Assumption: The $t q$-relation has a solution q that is entire in u and analytic in η near $\pi / 3$.

Our results are derived rigorously using this assumption.

Problem

We need to differentiate

$$
t(u) q(u)=\phi(u-\eta) q(u+\eta)+\phi(u+\eta) q(u-2 \eta)
$$

in η at $\eta=\pi / 3$.
Problem: Known constructions of Q-operators either work for $\eta \neq \pi / 3$ (Baxter) or $\eta=\pi / 3$ (Fabricius, Roan).

Assumption: The $t q$-relation has a solution q that is entire in u and analytic in η near $\pi / 3$.

Our results are derived rigorously using this assumption.

Connection to s_{n}, \bar{s}_{n}

After computations, η-derivatives cancel and we can express correlations in terms of

$$
q(0)\left(q^{\prime \prime}\left(\frac{\pi}{3}\right)+\frac{\phi^{\prime}}{\phi}\left(\frac{\pi}{3}\right) q^{\prime}\left(\frac{\pi}{3}\right)\right)-q^{\prime \prime}(0) q\left(\frac{\pi}{3}\right)
$$

at $\eta=\pi / 3$.
The polynomials s_{n} and \bar{s}_{n} can also be expressed in terms of $q(u)$, but at different points!
For instance, \bar{s}_{n} is essentally $q^{\prime}(\pi+\pi \tau / 2)$.
To relate these expressions we use a new difference-differential equation for $\left.q(u)\right|_{\eta=\pi / 3}$.

Connection to s_{n}, \bar{s}_{n}

After computations, η-derivatives cancel and we can express correlations in terms of

$$
q(0)\left(q^{\prime \prime}\left(\frac{\pi}{3}\right)+\frac{\phi^{\prime}}{\phi}\left(\frac{\pi}{3}\right) q^{\prime}\left(\frac{\pi}{3}\right)\right)-q^{\prime \prime}(0) q\left(\frac{\pi}{3}\right)
$$

at $\eta=\pi / 3$.
The polynomials s_{n} and \bar{s}_{n} can also be expressed in terms of $q(u)$, but at different points!
For instance, \bar{s}_{n} is essentally $q^{\prime}(\pi+\pi \tau / 2)$.
To relate these expressions we use a new difference-differential equation for $\left.q(u)\right|_{\eta=\pi / 3}$.

Connection to s_{n}, \bar{s}_{n}

After computations, η-derivatives cancel and we can express correlations in terms of

$$
q(0)\left(q^{\prime \prime}\left(\frac{\pi}{3}\right)+\frac{\phi^{\prime}}{\phi}\left(\frac{\pi}{3}\right) q^{\prime}\left(\frac{\pi}{3}\right)\right)-q^{\prime \prime}(0) q\left(\frac{\pi}{3}\right)
$$

at $\eta=\pi / 3$.
The polynomials s_{n} and \bar{s}_{n} can also be expressed in terms of $q(u)$, but at different points!
For instance, \bar{s}_{n} is essentally $q^{\prime}(\pi+\pi \tau / 2)$.
To relate these expressions we use a new difference-differential equation for $\left.q(u)\right|_{\eta=\pi / 3}$.

Difference-differential equation

Let

$$
\psi=\frac{\theta_{1}(u \mid \tau)^{n}}{\theta_{1}(3 u \mid 3 \tau) \theta_{3}(3 u / 2 \mid 3 \tau / 2)} q(u)
$$

Then

α and β are independent of u,
V is Darboux potential with parameters

This is the key fact that we need to complete the proof.

Difference-differential equation

Let

$$
\psi=\frac{\theta_{1}(u \mid \tau)^{n}}{\theta_{1}(3 u \mid 3 \tau) \theta_{3}(3 u / 2 \mid 3 \tau / 2)} q(u) .
$$

Then

$$
\psi_{u u}-V \psi=\alpha \psi(u)+\beta \frac{\theta_{4}(3 u / 2 \mid 3 \tau / 2)^{2}}{\theta_{3}(3 u / 2 \mid 3 \tau / 2)^{2}} \psi(u+\pi)
$$

α and β are independent of u,
V is Darboux potential with parameters

$$
\left(\frac{n(n+1)}{2}, \frac{n(n+1)}{2}, 1,1\right) .
$$

This is the key fact that we need to complete the proof.

Unverstry of сотнимиurg
(1) $X Y Z$ chain
(2) Painlevé VI equation
(3) Method: Baxter $T Q$-equation
(4) Manin's three cases
(5) Outlook

Three special cases

Manin (1998):

Our last remark concerns some similarity between the (generalized) Lamé potentials in the theory of KdV-type equations and our classically integrable potentials of the non-linear equation (2.2). According to [TV], the former are of the form

$$
\sum_{j=0}^{3} \frac{n_{j}\left(n_{j}+1\right)}{2} \wp\left(z+\frac{T_{j}}{2}, \tau\right)
$$

whereas according to our discussion the latter have coefficients (proportional to) $\left(n_{j}^{2}\right) / 2$ or $\left(n_{j}+\frac{1}{2}\right)^{2} / 2$. Is there a direct connection between the two phenomena?

References

Half squares

Our expression for correlation functions can be interpreted as the Hamiltonian of PVI with parameters

$$
\left(\frac{(n+1 / 2)^{2}}{2}, \frac{(n+1 / 2)^{2}}{2}, 0,0\right)
$$

evaluated at a solution to PVI with parameters

$$
\left(\frac{n^{2}}{2}, \frac{n^{2}}{2}, 0,0\right) .
$$

Triangular numbers

Q-operator eigenvalue satisfies differential-difference equation with parameters $\left(\frac{n(n+1)}{2}, \frac{n(n+1)}{2}, 1,1\right)$.

Bazhanov and Mangazeev found that it satisfies the non-stationary Lamé equation (quantum Painlevé VI)

$$
\psi_{t}=\frac{1}{2} \psi_{x x}-V \psi
$$

with parameters $\left(\frac{n(n+1)}{2}, \frac{n(n+1)}{2}, 0,0\right)$.
Manin's three cases appear together!
() chalmers

(1) $X Y Z$ chain

(2) Painlevé VI equation

(3) Method: Baxter $T Q$-equation

4 Manin's three cases
(5) Outlook

Questions

- Other correlations? One-point correlations, emptiness formation probability.
- Scaling limit $n \rightarrow \infty, \tau \rightarrow \mathrm{i} \infty, \mathrm{e}^{\pi \mathrm{i} \tau} \sim n^{-2 / 3}$. Should be related to SUSY sine-Gordon and Painlevé III.
- Conceptual explanation for relations between XYZ model and PVI equation?
- What is the eigenvector Ψ ? For the XXZ model, given by explicit integral formulas (Razumov, Stroganov \& Zinn-Justin 2007). Analogous formulas for XYZ would settle several open problems.

Questions

- Other correlations? One-point correlations, emptiness formation probability.
- Scaling limit $n \rightarrow \infty, \tau \rightarrow \mathrm{i} \infty, e^{\pi \mathrm{i} \tau} \sim n^{-2 / 3}$. Should be related to SUSY sine-Gordon and Painlevé III.
- Conceptual explanation for relations between XYZ model and PVI equation?
- What is the eigenvector Ψ ? For the $X X Z$ model, given by explicit integral formulas (Razumov, Stroganov \& Zinn-Justin 2007). Analogous formulas for $X Y Z$ would settle several open problems.

Questions

- Other correlations? One-point correlations, emptiness formation probability.
- Scaling limit $n \rightarrow \infty, \tau \rightarrow \mathrm{i} \infty, e^{\pi \mathrm{i} \tau} \sim n^{-2 / 3}$. Should be related to SUSY sine-Gordon and Painlevé III.
- Conceptual explanation for relations between XYZ model and PVI equation?
- What is the eigenvector Ψ ? For the XXZ model, given by explicit integral formulas (Razumov, Stroganov \& Zinn-Justin 2007) Analogous formulas for XYZ would settle several open problems.

Questions

- Other correlations? One-point correlations, emptiness formation probability.
- Scaling limit $n \rightarrow \infty, \tau \rightarrow \mathrm{i} \infty, e^{\pi \mathrm{i} \tau} \sim n^{-2 / 3}$. Should be related to SUSY sine-Gordon and Painlevé III.
- Conceptual explanation for relations between XYZ model and PVI equation?
- What is the eigenvector Ψ ? For the XXZ model, given by explicit integral formulas (Razumov, Stroganov \& Zinn-Justin 2007).
Analogous formulas for XYZ would settle several open problems.

