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Dirac-Bogoliubov-de Gennes (DBdG) equations

Problem: Given smooth functions v(x) and K(x), consider
(
v(x)∂x + ∂t ∆(x)

∆(x) v(x)∂x − ∂t

)(
u+

u−

)
=

(
0
0

)

where
∆(x) ≡ v(x)∂x log

√
K(x)

for u± = u±(x, t) with given initial conditions. [P.M., arXiv:2208.14467]

Questions:
� What is the general solution?
� What is the effect of ∆(x) 6= 0?
� What is the behavior as t→∞?
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Applications of DBdG-type equations

� [Andreev, Sov. Phys. JETP (1964)]:

Interfaces between normal metals and superconductors

� [Takayama, Lin-Liu, Maki, PRB (1980)]:

Continuum description of Su-Schrieffer-Heeger model for polyacetylene

� [P.M., arXiv:2208.14467]:

Dynamics in inhomogeneous Tomonaga-Luttinger liquids (TLLs)

a) Cold atoms
n(x)

a(x)

d) Spin chains

Inhomogeneous Tomonaga-Luttinger liquids

J(x)

c) Superconducting circuits

b) Charges in a nanowire
a(x)

[Gluza, P.M., Sotiriadis, JPA (2022)]
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We study inhomogeneous 1+1-dimensional quantum many-body systems described by Tomonaga-
Luttinger-liquid theory with general propagation velocity and Luttinger parameter varying smoothly
in space, equivalent to an inhomogeneous compactification radius for free boson conformal field the-
ory. This model appears prominently in low-energy descriptions, including for trapped ultra-cold
atoms, while here we propose and discuss its application to quantum Hall edges with inhomogeneous
interactions. The dynamics is shown to be governed by a pair of coupled continuity equations identi-
cal to inhomogeneous Dirac-Bogoliubov-de Gennes equations and solved by exact analytical means.
We obtain their exact Green’s functions and scattering matrix using Magnus expansions, general-
izing previous results for conformal interfaces and quantum wires coupled to leads, among others.
Our results explicitly describe the late-time evolution following quantum quenches, including inho-
mogeneous interaction quenches, and Andreev reflections in coupled quantum Hall edges, revealing
a remarkably universal dependence on details at stationarity or late times out of equilibrium.

Introduction. Tomonaga-Luttinger liquids (TLLs) [1–
5] is a prominent class of gapless quantum many-body
systems whose low-energy physics is described by the con-
formal field theory (CFT) of 1+1-dimensional compact-
ified free bosons. An important generalization is the in-
homogeneous theory where the propagation velocity v(x)
and the Luttinger parameter K(x) are positive functions
of position x. This was studied for quantum wires con-
nected to leads [6–9], as effective descriptions of trapped
ultra-cold atoms in equilibrium [10–15], and recently in
non-equilibrium contexts [16–24]. How to handle general
v(x) is known [25–29], but obtaining solutions for general
K(x) is an outstanding problem, in or out of equilibrium.

In this paper, we solve this problem by showing that
the dynamics is governed by two coupled PDEs that
we prove are solvable by exact analytical means, reveal-
ing remarkably universal late-time evolution following
quantum quenches and presence of Andreev reflections.
These PDEs are in the form of inhomogeneous Dirac-
Bogoliubov-de Gennes (DBdG) equations given by the
operator v(x)@x�0 +@t�3 +�(x)�1 with the effective gap

�(x) ⌘ v(x)⇤(x), ⇤(x) ⌘ @x log
p

K(x). (1)

Homogeneous DBdG equations, well known in supercon-
ductivity (but crucially different as our gap is external
and lacks self-consistency criteria), led to the original dis-
covery of Andreev reflections [30], and were later applied
to study, e.g., graphene [31, 32], transport in junctions
[33–35], and fermion pairing in fractional quantum Hall
(FQH) systems [36]. Versions with v(x) exist [37, 38], but
so far no one analytically solved the equations in general.

Besides its significance for condensed-matter applica-
tions, where K(x) encodes interactions of some under-
lying many-body system, the problem is important also
in high-energy theory, where K(x) instead appears as an
x-dependent compactification radius R(x) =

p
2↵0K(x)

with ↵0 of dimension length squared [39]. For stepwise
changes in R(x), this has been studied using interface

operators in boundary CFT [40, 41], and recently using
analogous operators in [66] for stepwise changes in time.
However, general R(x) were not considered.

Our main results are the exact Green’s functions and
scattering matrix for the governing DBdG equations,
practically expressible using Magnus expansions in a nat-
ural interaction picture and fully explicit at stationarity
or late times out of equilibrium, among others, reproduc-
ing and generalizing [6–8] and [41] to general K(x), see
Fig. 1(a). The results also connect [30] with breaking of
the Huygens-Fresnel principle [23] and proposed Andreev
reflections [7, 16, 42, 43] for inhomogeneous TLLs. Physi-
cal applications include quasi-1+1-dimensional ultra-cold
gases and gapless quantum XXZ spin chains with general
smoothly varying couplings, cf. [19, 23, 26, 29]. As our
primary example, we present a mechanism for Andreev
reflections between coupled FQH edges described by any-
onic CFTs with inhomogeneous density-density interac-
tions by mapping this model to an inhomogeneous TLL,
see Fig. 1(b). This is motivated by [36, 44–46] and recent
experimental observation [47, 48] of Andreev reflections
between FQH edges coupled through a superconductor.
We expect that our exact analytical results have broad
importance and applicability, in general when (D)BdG
equations appear, including in higher dimensions [32, 49].

µL µR
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K(x)
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x

(a)

FQH
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�(x)

K(x)
1

x
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Figure 1. Illustrations of (a) a quantum wire coupled to leads
with chemical potentials µL,R, and (b) coupled FQH edges
modelled as CFTs of counter-propagating anyons with inho-
mogeneous density-density interaction �(x) = 1�K(x)2

1+K(x)2
.
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Some previous works on inhomogeneous TLLs

� [Maslov, Stone, PRB (1995)], [Safi, Schulz, PRB (1995)], [Ponomarenko, PRB
(1995)]:

Quantum wires

� [Stringari, PRL (1996)], . . . , [Citro et al., New J. Phys. (2008)]:

Effective descriptions of trapped ultra-cold atoms in equilibrium

� . . . , [Brun, Dubail, SciPost (2018)], [Bastianello, Dubail, Stéphan, JPA (2020)],
[Gluza,P.M., Sotiriadis, JPA (2022)], [Ruggiero, Calabrese, Giamarchi, Foini, SciPost
(2022)]:

Inhomogeneous TLLs out of equilibrium
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Outline

� Tomonaga-Luttinger liquids / Compactified free bosons

� Examples of TLLs

� Why PDE approach?

� DBdG equations from TLL theory

� Solving the DBdG equations

� Application to quantum wires



Tomonaga-Luttinger liquids / Compactified free bosons



Tomonaga-Luttinger-liquid (TLL) theory

Given v > 0 and K > 0. Consider the action functional

S =
R2

8π

∫

R×S1
L

d2x (∂µϕ)(∂µϕ)

for fields ϕ : S1
L → S1

2π with compactification radius R satisfying

K =
R2

4

and metric (hµν) = diag(1,−1) in coordinates (x0, x1) = (vt, x).
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Quantum field theory in Hamiltonian framework

Hamiltonian of free compactified bosons

Hv,K =
1

2π

∫

S1
L

dx :
( v
K

[πΠ(x)]2 + vK[∂xϕ(x)]2
)

:

with bosonic field ϕ(x) and conjugate Π(x) for x ∈ S1
L satisfying

[∂xϕ(x),Π(y)] = iδ′(x− y).

How to understand this? Expanding ϕ(x) and Π(x) in plane waves:

Hv,K = (zero modes) +
πv

2K

∑

n 6=0

1

L
:
(
Π−nΠn + [Kn]2ϕ−nϕn

)
:

with [ϕn,Πm] = iδn,m.

Note: Mathematically, ϕ(x) and Π(x) are operator-valued distributions. Formal
Fourier transforms: ϕn = L−1

∫
dxϕ(x)e−2πinx/L and Πn =

∫
dxΠ(x)e2πinx/L.
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More precise definition of Hv,K

Infinitely many uncoupled quantum harmonic oscillators

Hv,K =
πv

L

(
a2

0 + ā2
0

)
+
πv

L

∑

n6=0

:(a−nan + ā−nān):

with an = a†−n and ān = ā†−n (n ∈ Z) for right/left movers satisfying

[an, am] = nδn+m,0 = [ān, ām], [an, ām] = 0,

and an|Ω〉 = ān|Ω〉 = 0 for n ≥ 0, defining the vacuum |Ω〉, where

:anam : = anam − 〈Ω|anam|Ω〉.

Note: Relation to ϕn and Πn for n 6= 0:

ϕn =
1

2
√
K

i

n

(
an − ā−n

)
, Πn =

√
K
(
a−n + ān

)
.
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Inhomogeneous TLL

Hamiltonian

Hv(·),K(·) =
1

2π

∫

S1
L

dx :

(
v(x)

K(x)
[πΠ(x)]2 + v(x)K(x)[∂xϕ(x)]2

)
:

with inhomogeneous periodic v(x) > 0 and K(x) > 0 on the circle S1
L.

For inhomogeneous periodic v(x) > 0 and K(x) = K > 0 constant:
[Dubail, Stéphan, Viti, Calabrese, SciPost Phys. (2017)], [Dubail, Stéphan, Calabrese, SciPost Phys. (2017)]

[Gawedzki, Langmann, P.M., JSP (2018)], [Langmann, P.M., PRL (2019)], [P.M., AHP (2021)]

Corresponding action functional

SR(·) =
1

8π

∫

R×S1
L

d2x
√
−hR(x)2(∂µϕ)(∂µϕ)

with inhomogeneous compactification radius R(x) = 2
√
K(x) and

metric (hµν) = diag(v(x)2/v2,−1) in coordinates (x0, x1) = (vt, x).
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Inhomogeneous marginal (JJ̄) deformation

Changing R(x) to R(x) + δR(x):

δS ≡ SR(·)+δR(·) − SR(·) =

∫

R×S1
L

d2x
√
−hΦ

with
Φ =

1

π

δR(x)

R(x)
JJ̄

where

J ≡ − 1√
K(x)

[
πΠ(x)−K(x)∂xϕ(x)

]
,

J̄ ≡ − 1√
K(x)

[
πΠ(x) +K(x)∂xϕ(x)

]
.

Similar to usual marginal deformation by an operator with conformal
weights (1, 1) in the case of constant compactification radius.
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Related special case: Conformal interfaces

[Bachas, Brunner, JHEP (2008)]:
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Examples of TLLs



Example: Quantum XXZ spin chain

Hamiltonian

H = −J
N∑

j=1

(
Sxj S

x
j+1 + Syj S

y
j+1 −∆SzjS

z
j+1

)

with [Sαj , S
β
j′ ] = iδj ,j′εαβγS

γ
j for α, β, γ ∈ {x, y, z}.

For |∆| < 1, the low-energy description is a homogeneous TLL with

v = Ja
π

2

√
1−∆2

arccos(∆)
, K =

π

2[π − arccos(∆)]

(from exact Bethe-ansatz solution) with a = L/N the lattice spacing.
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Example: Inhomogeneous quantum XXZ spin chain

Hamiltonian

H = −
N∑

j=1

Jj

(
Sxj S

x
j+1 + Syj S

y
j+1 −∆SzjS

z
j+1

)

with Jj = [J(xj) + J(xj+1)]/2 given by a smooth function J(x).

For |∆| < 1, the low-energy description is an inhomogeneous TLL with

v(x) = J(x)a
√

1 + 4∆/π, K = 1/
√

1 + 4∆/π

(to lowest order in ∆) with a = L/N the lattice spacing. [P.M., AHP (2021)]
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Example: Lieb-Liniger model

Hamiltonian

H =

∫ L/2

−L/2
dx

(
1

2m
∂xΨ(x)†∂xΨ(x) +

g

2
Ψ(x)†Ψ(x)Ψ(x)†Ψ(x)

)

with particle mass m, repulsive coupling constant g > 0, and bosonic
field Ψ(x) satisfying [Ψ(x)†,Ψ(y)] = δ(x− y).

The low-energy description is a homogeneous TLL with

v =
vF
K
, K ∼





1 + 4
γ for γ � 1,

π√
γ

(
1−

√
γ

2π

)−1/2
for γ � 1,

in terms of the dimensionless coupling γ = mg/ρ0.
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Example: Trapped ultra-cold atoms

Hamiltonian

H =

∫ L/2

−L/2
dx

(
1

2m
∂xΨ(x)†∂xΨ(x) +

g

2
Ψ(x)†Ψ(x)Ψ(x)†Ψ(x)

+ [V (x)− µ]Ψ(x)†Ψ(x)

)

with quantities as before, trap V (x), and chemical potential µ.

The low-energy description is an inhomogeneous TLL with

v(x) =
√
ρ0(x)g/m, K(x) = π

√
ρ0(x)/mg,

where ρ0(x) = [µ− V (x)]/g in the Thomas-Fermi regime.
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Why PDE approach?



Inhomogeneous TLL

Recall:

Hv(·),K(·) =
1

2π

∫ L/2

−L/2
dx :

(
v(x)

K(x)
[πΠ(x)]2 + v(x)K(x)[∂xϕ(x)]2

)
:

for periodic v(x) > 0 and K(x) > 0.

14 / 31



“Diagonalization” approaches

Naively: “Diagonalize” Hv(·),K(·) by expressing in terms of an and ān.
If K(x) = K, achieved by a “simple” Bogoliubov transformation.

Problem: Does not work for K(x) since [∂xϕ(x),Π(y)] = iδ′(x− y)
not satisfied by the transformed fields.

Alternatively: Expand ∂xϕ(x) and Π(x) not in plane waves but in
other eigenfunctions obtained by solving a Sturm-Liouville problem.

[Stringari, PRL (1996)], [Ho, Ma, J. Low Temp. Phys. (1999)], [Menotti, Stringari, PRA (2002)]
[Ghosh, arXiv:cond-mat/0402080], [Petrov, Gangardt, Shlyapnikov, J. Phys. IV (2004)]

[Citro, De Palo, Orignac, Pedri, Chiofalo, New J. Phys. (2008)], [Gluza, P.M., Sotiriadis, JPA (2022)]

For ultra-cold atoms in parabolic trap, then Legendre polynomials.

Problem: Again, not practical if eigenfunctions not known.
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DBdG equations from TLL theory



PDE approach

Instead of diagonalizing Hv(·),K(·) rewrite it as [P.M., arXiv:2208.14467]

Hv(·),K(·) =

∫ L/2

−L/2
dxπv(x) :

(
ρ̃+(x)2 + ρ̃−(x)2

)
:

with right/left-moving densities

ρ̃±(x) ≡ 1

2π
√
K(x)

[
πΠ(x)∓K(x)∂xϕ(x)

]
.

Result: ρ̃±(x) satisfy

[ρ̃±(x), ρ̃±(y)] = ∓ i

2π
δ′(x− y),

[ρ̃+(x), ρ̃−(y)] =
i

2π
Λ(x)δ(x− y)

with Λ(x) ≡ ∂x log
√
K(x) coupling right/left movers.
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Dirac-Bogoliubov-de Gennes (DBdG) equations

Heisenberg equation and commutation relations imply that ρ̃±(x) and
j̃±(x) ≡ ±v(x)ρ̃±(x) satisfy coupled continuity equations

∂tρ̃± + ∂xj̃± = ±∆(x)ρ̃∓

with ∆(x) ≡ v(x)Λ(x).

Result: j̃±(x, t) satisfy the inhomogeneous DBdG equations
(
v(x)∂x + ∂t ∆(x)

∆(x) v(x)∂x − ∂t

)(
j̃+(x, t)

j̃−(x, t)

)
=

(
0
0

)

with a local gap ∆(x) = v(x)∂x log
√
K(x). [P.M., arXiv:2208.14467]
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Remark 1: Vector and axial currents

The PDEs are equivalent to existence of vector and axial current with

ρ(x) = Π(x), (x) = v(x)K(x)ρ5(x),

ρ5(x) = −∂xϕ(x)/π, 5(x) =
v(x)

K(x)
ρ(x),

satisfying

∂tρ+ ∂x = 0, ∂t+ v(x)K(x)∂x
[
v(x)K(x)−1ρ

]
= 0,

∂tρ5 + ∂x5 = 0, ∂t5 + v(x)K(x)−1∂x
[
v(x)K(x)ρ5

]
= 0,

In terms of quantities for right/left movers:

ρ =
√
K(x)

(
ρ̃+ + ρ̃−

)
,  =

√
K(x)

(
j̃+ + j̃−

)
.
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Remark 2: Coupled U(1) current algebras

Define

an ≡
∫

S1
L

dx ρ̃+(x)e−2πinx/L, ān ≡
∫

S1
L

dx ρ̃−(x)e2πinx/L.

Obtain coupled U(1) current algebras:

[an, am] = nδn+m,0 = [ān, ām], [an, ām] =
i

2π
Λn−m,

where Λn ≡
∫
S1
L

dxΛ(x)e−2πinx/L.

=⇒ Infinitely many coupled quantum harmonic oscillators.

Special case: If K(x) = K, then Λn = 0 and the algebras decouple.
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Solving the DBdG equations



Inhomogeneous DBdG equations

Recall: j̃±(x, t) satisfy
(
v(x)∂x + ∂t ∆(x)

∆(x) v(x)∂x − ∂t

)(
j̃+
j̃−

)
=

(
0
0

)

with ∆(x) = v(x)∂x log
√
K(x).
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Inhomogeneous DBdG equations

Recall: j̃±(x, t) satisfy

∂x

(
j̃+
j̃−

)
+

(
v(x)−1∂t Λ(x)

Λ(x) −v(x)−1∂t

)(
j̃+
j̃−

)
=

(
0
0

)

with Λ(x) = ∂x log
√
K(x).
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Analogy with non-Hermitian (PT-symmetric) 2-level system

DBdG eqs. in frequency space ω for expectations in the infinite volume:

∂x

(
〈ĵ+(x, ω)〉
〈ĵ−(x, ω)〉

)
= iPω(x)

(
〈ĵ+(x, ω)〉
〈ĵ−(x, ω)〉

)
+

1

v(x)
σ3

(
〈j̃+(x, 0)〉
〈j̃−(x, 0)〉

)

for x ∈ R with the sl(2,C) matrix

Pω(x) ≡ ω

v(x)
σ3 + iΛ(x)σ1.

In general, Pω(x)Pω(y) 6= Pω(y)Pω(x), so need spatial ordering
←
X (

→
X )

where positions decrease (increase) from left to right.

Note: Expectations 〈·〉 w.r.t. arbitrary state in the infinite-volume limit L→∞.
Assumed system prepared in a steady state for t < 0 and evolving for t > 0 with
initial data 〈j̃±(x, t = 0)〉. Fourier transforms: ĵ±(x, ω) =

∫∞
0

dt j̃±(x, t)eiωt.
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Problem studied by Magnus

d

ds
Y (s) = A(s)Y (s), Y (s0) = Y0.

[Magnus, Comm. Pure Appl. Math. (1954)]
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Green’s functions

Result: Let 〈j̃±(x, 0)〉 have compact support and lim
|x|→∞

〈j̃±(x, t)〉 = 0.
Then,

(
〈j̃+(x, t)〉
〈j̃−(x, t)〉

)
=

∫

R
dy G(x, y; t)

1

v(y)

(
〈j̃+(y, 0)〉
〈j̃−(y, 0)〉

)

using G(x, y; t) =

∫

R

dω

2π
Ĝ(x, y;ω)e−iωt with

Ĝ(x, y;ω) = Ĝ+(x, y;ω)
σ0 + σ3

2
+ Ĝ−(x, y;ω)

σ0 − σ3

2
,

Ĝ±(x, y;ω) = ±θ(±[x− y])
←→
X ei

∫ x
y dsPω(s)σ3.

Special case: If K(x) = K, then Ĝ±(x, y;ω) equal

Ĝ0
±(x, y;ω) = ±θ(±[x− y])eiωτx,yσ3σ3, τx,y =

∫ x

y
ds

1

v(s)
.
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Green’s functions

Result: Let 〈j̃±(x, 0)〉 have compact support and lim
|x|→∞

〈j̃±(x, t)〉 = 0.
Then,

(
〈j̃+(x, t)〉
〈j̃−(x, t)〉

)
=

∫

R
dy G(x, y; t)

1

v(y)
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How to express the spatially-ordered exponentials?

The exponentials
←→
X ei

∫ x
y dsPω(s) are non-trivial to evaluate.

At least three possibilities:
� Dyson expansion
� Magnus expansion
� Product of exponentials of the sl(2,C) generators

See review [Blanes, Casas, Oteo, Ros, Phys. Rep. (2009)].
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Products of exponentials of the sl(2,C) generators

Result: Let

H = −σ3, E =
iσ1 − σ2

2
, F =

iσ1 + σ2

2
.

Then, for x > y,
←
X ei

∫ x
y dsPω(s) = eh(x)Heg(x)Eef(x)F,

where 



h′(x) = −i
[
ωv(x)−1 + g(x)e−2h(x)Λ(x)

]

g′(x) = i
[
e2h(x) − g(x)2e−2h(x)

]
Λ(x)

f ′(x) = ie−2h(x)Λ(x)

with h(0) = g(0) = f(0) = 0, and similar for x < y.

Follows from [Wei, Norman, JMP (1963); Proc. Amer. Math. Soc. (1964)].
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Magnus expansion

Result: For x > y,

←
X ei

∫ x
y dsPω(s) = exp

[ ∞∑

n=1

Ωn
ω(x, y)

]
eiωτx,yσ3

with

Ω1
ω(x, y) = −

∫ x

y

dx1 Λ(x1)Aω(x1, x), Aω(s, x) ≡
(

0 e−2iωτs,x

e2iωτs,x 0

)
,

Ω2
ω(x, y) = −i

∫ x

y

dx1

∫ x1

y

dx2 Λ(x1)Λ(x2) sin(2ωτx1,x2
)σ3,

and

Ωn
ω(x, y) = −

n−1∑

k=1

Bk
k!

∑

m1≥1,...,mk≥1
m1+...+mk=n−1

∫ x

y
ds

k∏

j=1

ad
Ω
mj
ω (s,y)

Λ(s)Aω(s, x)

for n ≥ 3 consist of similar nested spatial integrals of sl(2,C)-valued
functions that vanish at ω = 0, and similar for x < y.
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Late-time asymptotics

If ω = 0, then P0(x) = i∂x log
(√

K(x)
)
σ1 for different x commute

and the only non-zero contribution in the expansions is

exp

[
−
∫ x

y
dsΛ(s)σ1

]
≡ T(x, y) =




√
K(y)
K(x)

+
√
K(x)
K(y)

2

√
K(y)
K(x)

−
√
K(x)
K(y)

2√
K(y)
K(x)

−
√
K(x)
K(y)

2

√
K(y)
K(x)

+
√
K(x)
K(y)

2


 .

Result: Leading t� 1 contribution to G(x, y; t) is T(x, y)G0(x, y; t).

Example: For the current  =
√
K(x)

(
j̃+ + j̃−

)
,

〈(x, t)〉 =

∫

R
dy

δ(τx,y − t)− δ(τx,y + t)

2
〈ρ(y, 0)〉

+

∫

R
dy

δ(τx,y − t) + δ(τx,y + t)

2v(y)
〈(y, 0)〉+ o(t−1)

when t� 1 for all K(x).
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Transfer matrix

Consider a subsystem on a finite interval [y, x] with 〈j̃±(·, 0)〉 = 0
inside and currents instead incident at y and x.

Result: The transfer matrix T(ω) between (ĵ+(y, ω), ĵ−(y, ω))T and
(ĵ+(x, ω), ĵ−(x, ω))T for x > y is

T(ω) =

(
T++(ω) T+−(ω)
T−+(ω) T−−(ω)

)
=
←
X ei

∫ x
y dsPω(s).

Simplifies for ω = 0:

T(ω = 0) =




√
K(y)
K(x)

+
√
K(x)
K(y)

2

√
K(y)
K(x)

−
√
K(x)
K(y)

2√
K(y)
K(x)

−
√
K(x)
K(y)

2

√
K(y)
K(x)

+
√
K(x)
K(y)

2


 = T (x, y).

28 / 31



Transfer matrix

Consider a subsystem on a finite interval [y, x] with 〈j̃±(·, 0)〉 = 0
inside and currents instead incident at y and x.

Result: The transfer matrix T(ω) between (ĵ+(y, ω), ĵ−(y, ω))T and
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Scattering matrix

Result: The scattering matrix is

S(ω) =

(
T (ω) R(ω)

R̃(ω) T (ω)

)

with the transmission and reflection amplitudes (|T (ω)|2 + |R(ω)|2 = 1)

T (ω) =
1

T−−(ω)
, R(ω) =

T+−(ω)

T−−(ω)
, R̃(ω) = −R(ω)

T (ω)

T (ω)
.

Again, simplifies for ω = 0:

T (ω = 0) =
2
√
K(y)K(x)

K(y) +K(x)
, R(ω = 0) =

K(y)−K(x)

K(y) +K(x)
.

Generalizes results for conformal interfaces and yields simple proof of
independence on intermediate values of K(·) for quantum wires.

[Bachas, Brunner, JHEP (2008)], [Maslov, Stone, PRB (1995)], [Safi, Schulz, PRB (1995)]
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Transfer matrix for density and current

Let ρ(x, t) =

∫

R

dω

2π
ρ̂(x, ω)e−iωt and (x, t) =

∫

R

dω

2π
̂(x, ω)e−iωt.

Result: The corresponding zero-frequency transfer matrix is given by

(
〈ρ̂(x, ω = 0)〉
〈̂(x, ω = 0)〉

)
=

(
K(x)/v(x)
K(y)/v(y) 0

0 1

)(
〈ρ̂(y, ω = 0)〉
〈̂(y, ω = 0)〉

)
.

Implies that 〈5〉 = v(x)
K(x)〈ρ〉 and 〈〉 are universal.
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Application to quantum wires



Transport in quantum wire

Consider a quantum quench turning off a smooth chemical-potential
profile µ(x) at t = 0. Suppose there is some finite ` > 0 so that

µ(x),K(x), v(x) =

{
µL,KL, vL for x < −`,
µR,KR, vR for x > +`.

Due to universality of v(x)
K(x)〈ρ〉 and equilibrium before the quench:

〈ρ(y, 0)〉 =
K(y)

πv(y)
µ(y), 〈(y, 0)〉 = 0.

Inserted into the t� 1 expression for :

lim
t→∞
〈(x, t)〉 =

µ+ − µ−
2π

with µ+ = KLµL and µ− = KRµR.

Exact Dirac-Bogoliubov-de Gennes dynamics for inhomogeneous quantum liquids

Per Moosavi⇤
Institute for Theoretical Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland

(Dated: August 24, 2022)

We study inhomogeneous 1+1-dimensional quantum many-body systems described by Tomonaga-
Luttinger-liquid theory with general propagation velocity and Luttinger parameter varying smoothly
in space, equivalent to an inhomogeneous compactification radius for free boson conformal field the-
ory. This model appears prominently in low-energy descriptions, including for trapped ultra-cold
atoms, while here we propose and discuss its application to quantum Hall edges with inhomogeneous
interactions. The dynamics is shown to be governed by a pair of coupled continuity equations identi-
cal to inhomogeneous Dirac-Bogoliubov-de Gennes equations and solved by exact analytical means.
We obtain their exact Green’s functions and scattering matrix using Magnus expansions, general-
izing previous results for conformal interfaces and quantum wires coupled to leads, among others.
Our results explicitly describe the late-time evolution following quantum quenches, including inho-
mogeneous interaction quenches, and Andreev reflections in coupled quantum Hall edges, revealing
a remarkably universal dependence on details at stationarity or late times out of equilibrium.

Introduction. Tomonaga-Luttinger liquids (TLLs) [1–
5] is a prominent class of gapless quantum many-body
systems whose low-energy physics is described by the con-
formal field theory (CFT) of 1+1-dimensional compact-
ified free bosons. An important generalization is the in-
homogeneous theory where the propagation velocity v(x)
and the Luttinger parameter K(x) are positive functions
of position x. This was studied for quantum wires con-
nected to leads [6–9], as effective descriptions of trapped
ultra-cold atoms in equilibrium [10–15], and recently in
non-equilibrium contexts [16–24]. How to handle general
v(x) is known [25–29], but obtaining solutions for general
K(x) is an outstanding problem, in or out of equilibrium.

In this paper, we solve this problem by showing that
the dynamics is governed by two coupled PDEs that
we prove are solvable by exact analytical means, reveal-
ing remarkably universal late-time evolution following
quantum quenches and presence of Andreev reflections.
These PDEs are in the form of inhomogeneous Dirac-
Bogoliubov-de Gennes (DBdG) equations given by the
operator v(x)@x�0 +@t�3 +�(x)�1 with the effective gap

�(x) ⌘ v(x)⇤(x), ⇤(x) ⌘ @x log
p

K(x). (1)

Homogeneous DBdG equations, well known in supercon-
ductivity (but crucially different as our gap is external
and lacks self-consistency criteria), led to the original dis-
covery of Andreev reflections [30], and were later applied
to study, e.g., graphene [31, 32], transport in junctions
[33–35], and fermion pairing in fractional quantum Hall
(FQH) systems [36]. Versions with v(x) exist [37, 38], but
so far no one analytically solved the equations in general.

Besides its significance for condensed-matter applica-
tions, where K(x) encodes interactions of some under-
lying many-body system, the problem is important also
in high-energy theory, where K(x) instead appears as an
x-dependent compactification radius R(x) =

p
2↵0K(x)

with ↵0 of dimension length squared [39]. For stepwise
changes in R(x), this has been studied using interface

operators in boundary CFT [40, 41], and recently using
analogous operators in [66] for stepwise changes in time.
However, general R(x) were not considered.

Our main results are the exact Green’s functions and
scattering matrix for the governing DBdG equations,
practically expressible using Magnus expansions in a nat-
ural interaction picture and fully explicit at stationarity
or late times out of equilibrium, among others, reproduc-
ing and generalizing [6–8] and [41] to general K(x), see
Fig. 1(a). The results also connect [30] with breaking of
the Huygens-Fresnel principle [23] and proposed Andreev
reflections [7, 16, 42, 43] for inhomogeneous TLLs. Physi-
cal applications include quasi-1+1-dimensional ultra-cold
gases and gapless quantum XXZ spin chains with general
smoothly varying couplings, cf. [19, 23, 26, 29]. As our
primary example, we present a mechanism for Andreev
reflections between coupled FQH edges described by any-
onic CFTs with inhomogeneous density-density interac-
tions by mapping this model to an inhomogeneous TLL,
see Fig. 1(b). This is motivated by [36, 44–46] and recent
experimental observation [47, 48] of Andreev reflections
between FQH edges coupled through a superconductor.
We expect that our exact analytical results have broad
importance and applicability, in general when (D)BdG
equations appear, including in higher dimensions [32, 49].

µL µR

KL

KR

K(x)

1

x

(a)

FQH

FQH

�(x)

K(x)
1

x

(b)

Figure 1. Illustrations of (a) a quantum wire coupled to leads
with chemical potentials µL,R, and (b) coupled FQH edges
modelled as CFTs of counter-propagating anyons with inho-
mogeneous density-density interaction �(x) = 1�K(x)2

1+K(x)2
.
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changes in R(x), this has been studied using interface

operators in boundary CFT [40, 41], and recently using
analogous operators in [66] for stepwise changes in time.
However, general R(x) were not considered.

Our main results are the exact Green’s functions and
scattering matrix for the governing DBdG equations,
practically expressible using Magnus expansions in a nat-
ural interaction picture and fully explicit at stationarity
or late times out of equilibrium, among others, reproduc-
ing and generalizing [6–8] and [41] to general K(x), see
Fig. 1(a). The results also connect [30] with breaking of
the Huygens-Fresnel principle [23] and proposed Andreev
reflections [7, 16, 42, 43] for inhomogeneous TLLs. Physi-
cal applications include quasi-1+1-dimensional ultra-cold
gases and gapless quantum XXZ spin chains with general
smoothly varying couplings, cf. [19, 23, 26, 29]. As our
primary example, we present a mechanism for Andreev
reflections between coupled FQH edges described by any-
onic CFTs with inhomogeneous density-density interac-
tions by mapping this model to an inhomogeneous TLL,
see Fig. 1(b). This is motivated by [36, 44–46] and recent
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practically expressible using Magnus expansions in a nat-
ural interaction picture and fully explicit at stationarity
or late times out of equilibrium, among others, reproduc-
ing and generalizing [6–8] and [41] to general K(x), see
Fig. 1(a). The results also connect [30] with breaking of
the Huygens-Fresnel principle [23] and proposed Andreev
reflections [7, 16, 42, 43] for inhomogeneous TLLs. Physi-
cal applications include quasi-1+1-dimensional ultra-cold
gases and gapless quantum XXZ spin chains with general
smoothly varying couplings, cf. [19, 23, 26, 29]. As our
primary example, we present a mechanism for Andreev
reflections between coupled FQH edges described by any-
onic CFTs with inhomogeneous density-density interac-
tions by mapping this model to an inhomogeneous TLL,
see Fig. 1(b). This is motivated by [36, 44–46] and recent
experimental observation [47, 48] of Andreev reflections
between FQH edges coupled through a superconductor.
We expect that our exact analytical results have broad
importance and applicability, in general when (D)BdG
equations appear, including in higher dimensions [32, 49].
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KR

K(x)
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x
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K(x)
1
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Figure 1. Illustrations of (a) a quantum wire coupled to leads
with chemical potentials µL,R, and (b) coupled FQH edges
modelled as CFTs of counter-propagating anyons with inho-
mogeneous density-density interaction �(x) = 1�K(x)2

1+K(x)2
.
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Summary



� Showed that the dynamics of inhomogeneous TLLs are described
by inhomogeneous DBdG equations.

� Obtained general solution of the DBdG equations.

� Derived explicit results at late time or at stationarity that
generalize known results in the literature.

� Used results to study coupled FQH edges, quantum wires, and
quantum quenches.

� Results applicable whenever DBdG-type equations appear and
approach directly generalizable to other algebras than sl(2,C).

� Interesting to extend to heat transport and correlation functions.

Thank you for your attention!
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