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Dirac-Bogoliubov-de Gennes (DBdG) equations

Problem: Given smooth functions v(z) and K (x), consider

(5 i a) ()= )

where

A(z) = v(z)0; log / K (x)
for ux = uy(x,t) with given initial conditions. [P-M., arXiv:2208.14467]
Questions:

o What is the general solution?
o What is the effect of A(x) # 07
o What is the behavior as t — 00?
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Applications of DBdG-type equations

< [Andreev, Sov. Phys. JETP (1964)]:

Interfaces between normal metals and superconductors

¢ [Takayama, Lin-Liu, Maki, PRB (1980)]:

Continuum description of Su-Schrieffer-Heeger model for polyacetylene

< [P.M., arXiv:2208.14467]:

Dynamics in inhomogeneous Tomonaga-Luttinger |iquids (TLLS)

N
a(x) \ arx)
b) Charges in a nanowire

\ d) Spin chams
Inhomogeneous Tomonaga-Luttinger liqulds
\ \
n(x) a) Cold atoms c) Superconducting circuits
AN J69
®oo0 o =] [Gluza, P.M., Sotiriadis, JPA (2022)]
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Applications of DBdG-type equations

< [Andreev, Sov. Phys. JETP (1964)]:

Interfaces between normal metals and superconductors

¢ [Takayama, Lin-Liu, Maki, PRB (1980)]:

Continuum description of Su-Schrieffer-Heeger model for polyacetylene

< [P.M., arXiv:2208.14467]:
Quantum wires Fractional quantum Hall (FQH) edges

1229 MR
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Some previous works on inhomogeneous TLLs

¢ [Maslov, Stone, PRB (1995)], [Safi, Schulz, PRB (1995)], [Ponomarenko, PRB
(1995)]:

Quantum wires

¢ [Stringari, PRL (1996)], ..., [Citro et al., New J. Phys. (2008)]:

Effective descriptions of trapped ultra-cold atoms in equilibrium

< ..., [Brun, Dubail, SciPost (2018)], [Bastianello, Dubail, Stéphan, JPA (2020)],
[Gluza, P.M., Sotiriadis, JPA (2022)], [Ruggiero, Calabrese, Giamarchi, Foini, SciPost
(2022)]:

Inhomogeneous TLLs out of equilibrium
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Tomonaga-Luttinger liquids / Compactified free bosons



Tomonaga-Luttinger-liquid (TLL) theory
Given v > 0 and K > 0. Consider the action functional

R2

"~ 8w

s / 02z (90)(9,0)
RXS%

for fields o : S} — S with compactification radius R satisfying

RZ

K
4

and metric (h,,) = diag(1, —1) in coordinates (z°, 2') = (vt, z).

4/31



Quantum field theory in Hamiltonian framework

Hamiltonian of free compactified bosons
v

1
HuK:f d$:<K

5 1, [TI1(@))? + vK [Op(@)]?)

with bosonic field ¢(z) and conjugate II(z) for z € S} satisfying

[0 (), T1(y)] = 16" (z — y).
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Quantum field theory in Hamiltonian framework

Hamiltonian of free compactified bosons
_ 1 (Y 2 2).
o =57 [, do : ([ l(@)]? + VK [Dap(a)]? )
with bosonic field ¢(z) and conjugate II(z) for z € S} satisfying
[0 (), T1(y)] = 16" (z — y).

How to understand this? Expanding ¢(x) and II(x) in plane waves:

™ 1
H, i = (zero modes) + oK % T :(H_an + [Kn]2¢_n¢n):
n

with [¢n, II,] = 10y -

Note: Mathematically, ¢(x) and II(x) are operator-valued distributions. Formal
Fourier transforms: ¢, = L' [da ¢(z)e™?™"*/L and II,, = [ dx II(x)e*™ /L.
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More precise definition of H,

Infinitely many uncoupled quantum harmonic oscillators

TV U
Hy k= T(ag + dg) + T ; H(a—pan + a_pay):
n

with a, = al, and @, = @', (n € Z) for right/left movers satisfying
[aTM am] = n5n+m,0 = [ana dm]; [an7 dm] = 07
and a,|) = a,|?) = 0 for n > 0, defining the vacuum [Q2), where

Hn = pam — (Q]anam|Q).

Note: Relation to ¢, and II,, for n # 0:
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Inhomogeneous TLL

Hamiltonian

_ 1 A v(z) 2 2.
Hoy) k() = 52 /S ; de: ( K (@) M@ +v(@) K @)0ep@)]" )
with inhomogeneous periodic v(z) > 0 and K(z) > 0 on the circle S} .

For inhomogeneous periodic v(z) > 0 and K(z) = K > 0 constant:

[Dubail, Stéphan, Viti, Calabrese, SciPost Phys. (2017)], [Dubail, Stéphan, Calabrese, SciPost Phys. (2017)]
[Gawedzki, Langmann, P.M., JSP (2018)], [Langmann, P.M., PRL (2019)], [P.M., AHP (2021)]
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Inhomogeneous TLL

Hamiltonian

_ 1 A v(z) 2 2.
Hoy) k() = 52 /S ; de: ( K (@) M@ +v(@) K @)0ep@)]" )
with inhomogeneous periodic v(z) > 0 and K(z) > 0 on the circle S} .

For inhomogeneous periodic v(z) > 0 and K(z) = K > 0 constant:

[Dubail, Stéphan, Viti, Calabrese, SciPost Phys. (2017)], [Dubail, Stéphan, Calabrese, SciPost Phys. (2017)]
[Gawedzki, Langmann, P.M., JSP (2018)], [Langmann, P.M., PRL (2019)], [P.M., AHP (2021)]

Corresponding action functional
1
Sny = g2 [, PaVRR@P0"0)(0,0)
T JRxS}

with inhomogeneous compactification radius R(x) = 2,/K(x) and
metric (hyy) = diag(v(x)?/v?, —1) in coordinates (20, z') = (vt, z).
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Inhomogeneous marginal (.J.J) deformation

Changing R(z) to R(z) + dR(x):

08 = Sr()4sr() — SR() = / d®zV/—h®

Rx St
with o l(SR(l‘) -
m R(x)
where
B 1

1=~ gl - oo,

_ 1

I R [711(@) + K (2)sp()].

Similar to usual marginal deformation by an operator with conformal

weights (1,1) in the case of constant compactification radius.
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Related special case: Conformal interfaces

[Bachas, Brunner, JHEP (2008)]:

Contormal

TLL wth ‘21 ?n\reiﬁue TLL \'th 21

| X
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Examples of TLLs



Example: Quantum XXZ spin chain

Hamiltonian
N
H=-J} ( 7571+ 5]5] = AS] JZ‘+1)
j=1

with [S;‘, Sﬁ] = iéjvj/eagvs;y for o, 8,7 € {z,y, 2}.

For |A| < 1, the low-energy description is a homogeneous TLL with

T V1— A2 T
v=Jo-—, K=
2 arccos(A) 2[m — arccos(A)]

(from exact Bethe-ansatz solution) with a = L/N the lattice spacing.
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Example: Inhomogeneous quantum XXZ spin chain

Hamiltonian

N
H==>1J (stﬁl + 575741 — ASF f+1>
j=1

with J; = [J(z;) + J(z41)]/2 given by a smooth function J(z).

For |A| < 1, the low-energy description is an inhomogeneous TLL with

v(z) = J(x)a/1+ 4A /T, K=1/\/14+4A/7

(to lowest order in A) with a = L/N the lattice spacing. [p.m., aHP (2021)]
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Example: Lieb-Liniger model

Hamiltonian

L/2
H= / (a W () 0,0 () + g‘ll(a:)T\I/(x)\Il(x)T\If(x)>

L/2

with particle mass m, repulsive coupling constant g > 0, and bosonic
field W (x) satisfying [¥(x)F, ¥(y)] = 6(z — y).

The low-energy description is a homogeneous TLL with

4
v—vi K~ 1+; 1/2 for > 1,
=, A\~
K %(1—ﬁ> for v < 1,

in terms of the dimensionless coupling v = mg/po.
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Example: Trapped ultra-cold atoms

Hamiltonian

_ [ 1 f 9 ()0 ()0 ()T (2
H—/_L/2 dz <2m8m\11(ac) 0, 0(x) + S0 () U(2)¥(2) 0 (a)

V() - MJ‘P(%)W’(%))

with quantities as before, trap V' (z), and chemical potential x.

The low-energy description is an inhomogeneous TLL with

(@) = Vpo(a)g/m,  K(x) =my/po(z)/my,

where po(z) = [ — V(x)]/g in the Thomas-Fermi regime.
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Why PDE approach?



Inhomogeneous TLL

Recall:

L/2 ol
Hiowo =5 [ | a0 FEy e + oK @) )

for periodic v(x) > 0 and K (x) > 0.
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“Diagonalization” approaches

Naively: “Diagonalize” H,.) k(. by expressing in terms of a,, and a,.
If K(x) = K, achieved by a “simple” Bogoliubov transformation.

Problem: Does not work for K () since [0,¢(x),II(y)] = i0'(x — y)
not satisfied by the transformed fields.
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“Diagonalization” approaches

Naively: “Diagonalize” H,.) k(. by expressing in terms of a,, and a,.
If K(x) = K, achieved by a “simple” Bogoliubov transformation.

Problem: Does not work for K () since [0,¢(x),II(y)] = i0'(x — y)
not satisfied by the transformed fields.

Alternatively: Expand 0,¢(z) and II(z) not in plane waves but in
other eigenfunctions obtained by solving a Sturm-Liouville problem.

[Stringari, PRL (1996)], [Ho, Ma, J. Low Temp. Phys. (1999)], [Menotti, Stringari, PRA (2002)]
[Ghosh, arXiv:cond-mat/0402080], [Petrov, Gangardt, Shlyapnikov, J. Phys. IV (2004)]
[Citro, De Palo, Orignac, Pedri, Chiofalo, New J. Phys. (2008)], [Gluza, P.M., Sotiriadis, JPA (2022)]

For ultra-cold atoms in parabolic trap, then Legendre polynomials.

Problem: Again, not practical if eigenfunctions not known.
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DBdG equations from TLL theory



PDE approach

Instead of diagonalizing H,(.) x(.) rewrite it as [P-M., arXiv:2208.14467]

L/2 _ y )
Hy() k() = /_ L dmv(ff:):(p+(x) + p—(z) ):

with right/left-moving densities

~ 1
p(z) = m |:7TH(I) F K(m)@xcp(x)} .

Result: py(x) satisfy
i

[P+ (), p=(y)] = ﬂFﬂc?’(w -y),

7(2). 5 ()] = 5-A@)3(z — )

with A(z) = 0, log /K (z) coupling right/left movers.
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Dirac-Bogoliubov-de Gennes (DBdG) equations

Heisenberg equation and commutation relations imply that p.(z) and
J+(x) = +v(x)py(x) satisfy coupled continuity equations

Oipx + Opjr = +A(2)p
with A(z) = v(x)A(z).

Result: }i(a:,t) satisfy the inhomogeneous DBdG equations

(8 ) CE)- 0

with a local gap A(w) = v(x)@x ]Og \/ K(.CE) [P.M., arXiv:2208.14467]
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Remark 1: Vector and axial currents

The PDEs are equivalent to existence of vector and axial current with

pla) =T1(z), (o) = o) K (2)ps(),
pale) = ~Opl@)/m, aslo) = g plo)
satisfying
Orp + 0z = 0, 0rg + v(@) K ()0, [v(z) K (2) ' p] =0,

0
Ops + 0235 =0, Oygs +v(2)K ()10, [v(z) K (z)ps| =0,

In terms of quantities for right/left movers:

p=VEK@(p+p-), 1=VEK@)(i+i)
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Remark 2: Coupled U(1) current algebras

Define

anz/ dz gy (z)e=2mne/L, anz/ dz p_(z)e?n=/L
Sl S

1
L L
Obtain coupled U(1) current algebras:

i

%Anfma

[an7 am] - n5n+m,0 - [am am]a [an7 C_Zm] -
where A,, = fsi dz A(x)e=2mine/L

= Infinitely many coupled quantum harmonic oscillators.

Special case: If K(z) = K, then A,, = 0 and the algebras decouple.
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Solving the DBdG equations



Inhomogeneous DBAG equations

Recall: ji(z,t) satisfy

(X" ) (6) - 6)

with A(z) = v(x)0, log /K ().
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Inhomogeneous DBAG equations

Recall: ji(z,t) satisfy

o (1) () ()= (6)

with A(z) = 0, log /K (z).

20/31



Analogy with non-Hermitian (PT-symmetric) 2-level system

DBdG egs. in frequency space w for expectations in the infinite volume:

Go@ ) _ip (o (Gr@w)), 1 ({e(@0)
Or <<5<x,w>>) = iPul) <<j<m,w>>> @ <<j<x,o>>)
for z € R with the s[(2,C) matrix
Pu(z) = %03 +iA(z)o;.

— =
In general, P, ()P, (y) # Pu(y)Pw(x), so need spatial ordering X' (X)
where positions decrease (increase) from left to right.

Note: Expectations (-) w.r.t. arbitrary state in the infinite-volume limit L — oo.
Assumed system prepared in a steady state for ¢ < 0 and evolving for ¢ > 0 with
initial data (j1 (z,t = 0)). Fourier transforms: ji(z,w) = 157 dt jo (z, t)elwt.
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Problem studied by Magnus

—Y(s) = A(s)Y (s), Y (s0) = Yp.

[Magnus, Comm. Pure Appl. Math. (1954)]
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Green's functions

Result: Let (j+(x,0)) have compact support and lim (ju(z,t))

Then, ol
G (2.1) L (a0
<<’5_<x,t>> = [y o) <<j_<y,o>>)

using G(x,y;t):/R

—

G(x, y; w)e @t with

N | N——
¥ &

oo+ 03
2

A~ N g
G(r,y;w) = Gy (2, y;w)——— + G_(7,y;w)

e ol JasP (s)
Ca(z,y;0) = H0(+[x — y)) Xe'ly 5P gy

=0.
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Green's functions

Result: Let (j+(x,0)) have compact support and lim (ju(z,t))

Then, ol
G (2.1) L (a0
<<’5_<x,t>> = [y o) <<j_<y,o>>)

using G(x,y;t):/R

—

G(x, y; w)e @t with

N | N——
¥ &

oo+ 03
2

00 — 03
9 )

Gz, y;w) = Gy (2, y;0)——— + G_(z,y;w)
e ol JasP (s)
Ca(z,y;0) = H0(+[x — y)) Xe'ly 5P gy

Special case: If K(z) = K, then G+ (x, y;w) equal

G (z,y;w) = £0(%[z — y])eW™=v3 03, Toy = / ds —.
y

v(s)

=0.
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How to express the spatially-ordered exponentials?

1f ds Py (s)

The exponentials Xe are non-trivial to evaluate.

At least three possibilities:
o Dyson expansion
© Magnus expansion
o Product of exponentials of the sl(2, C) generators

See review [Blanes, Casas, Oteo, Ros, Phys. Rep. (2009)].
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Products of exponentials of the s[(2, C) generators

Result: Let

H:—O'g, E=

Then, for xz > vy,
Xeily d5Pu(s) _ h(@)Hoo(@)EQf(@)F
where
W (z) = —i [wv(x)*l + g(x)e*%(w)A(x)}
g'(2) = [ — g(a)%e 2] Afa)
f(z) = te M)A ()

with ~(0) = g(0) = f(0) = 0, and similar for x < y.

Follows from [Wei, Norman, JMP (1963); Proc. Amer. Math. Soc. (1964)].
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Magnus expansion

Result: For z > y,

;ei Sy dsPu(s) _ exp

(9
5 st
n=1

with
/ dzy A(z1)Au(21,2),  Au(s,z) = (e%ﬁm 6—21575,,5)7
Q2 (z,y) / dx1/ dzo A(z1)A(z2) sin(2wry, 4,)03,
Y y
and

- k
n B *
Q) (z,y) g o g / ds Hadﬂzj(syy) A(s)Au(s, x)
k=1 j=1

m1>1,...,mp>1 7Y
mi+..+mp=n—1
for n > 3 consist of similar nested spatial integrals of s((2, C)-valued

functions that vanish at w = 0, and similar for x < y.
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Late-time asymptotics

If w =0, then Py(z) = i8, log(\/K(z) )y for different 2 commute
and the only non-zero contribution in the expansions is

K(y) K(z) K(y) K (z)
[ @ \/Wz);\/mm \/K&);\/K( )
exp / dSA(S)O'1:| =T(z,y) = - -

Result: Leading ¢ >> 1 contribution to G(z,y;t) is T(z,y)G%(z, y; ).
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Late-time asymptotics

If w =0, then Py(z) = i8, log(\/K(z) )y for different 2 commute
and the only non-zero contribution in the expansions is

[ z VESHES VRSV RS
exp / dsA(s)al} =T(z,y) = L LR

Result: Leading ¢ >> 1 contribution to G(z,y;t) is T(z,y)G"(z, y;t)

Example: For the current 3 = K(a:)(fj:r +:7:),

((x, b)) = /Rdy 0(Toy —t) — 6(Tay + 1)

) {p(y,0))
[ S ) o7

when ¢ > 1 for all K(z).
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Transfer matrix

Consider a subsystem on a finite interval [y, z] with (j=(-,0)) =0
inside and currents instead incident at y and x.

Result: The transfer matrix T(w) between (j'+(y,w),j'_(y,w))T and
(i (z,w), 7 (z,w))T for xz >y is

W) = Tit(w) Ti-(w) _ el Iy dsPuls)
Te = (10 1) =7 '
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Transfer matrix

Consider a subsystem on a finite interval [y, z] with (j=(-,0)) =0
inside and currents instead incident at y and x.

Result: The transfer matrix T(w) between (j4(y,w),j_(y,w))T and
(j+(m,w),j,(m,w))T for z > Yy is

W) = Tit(w) Ti-(w) _ el Iy dsPuls)
Te = (10 1) =7 '

Simplifies for w = 0:

Ry, [K@ K@) _ /K@
VK%éVK& ¢K@;¢K&
ViEs—Vig  Vest/ kg ’

2 2
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Scattering matrix

Result: The scattering matrix is

with the transmission and reflection amplitudes  (|7(w)|*> + |R(w)|* = 1)

1 T mo o T
_T__(w)’ R( ) R( )m

S

~—
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Scattering matrix

Result: The scattering matrix is

with the transmission and reflection amplitudes  (|7(w)|*> + |R(w)|* = 1)

) == K@ =T R = -Fw) ;Ez;
Again, simplifies for w = 0:
2 /EGK@ Ky - K@)
B (e (e N (ORI )

Generalizes results for conformal interfaces and yields simple proof of
independence on intermediate values of K (-) for quantum wires.

[Bachas, Brunner, JHEP (2008)], [Maslov, Stone, PRB (1995)], [Safi, Schulz, PRB (1995)]
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Transfer matrix for density and current

d d .
Let p(z,t) = / —w,o(x w)e ™« and y(z,t) = / —wj(x,w)e_“"t.
R 2T R 2T

Result: The corresponding zero-frequency transfer matrix is given by
pla,w= 0)>> _ (¥arE g ((ﬁ(y,w = 0)>> .
(J(z,w = 0)) 0 1) \{(y,w =0))

<<
(@)

Implies that (j5) = %(p) and (7) are universal.
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Application to quantum wires



Transport in quantum wire

Consider a quantum quench turning off a smooth chemical-potential
profile pu(x) at t = 0. Suppose there is some finite £ > 0 so that

K f _
lu(x)yK(l'),’U(x) — {,[LL’ L,VL or xr < E’

ur, Kr,vp for x > +/.
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Transport in quantum wire

Consider a quantum quench turning off a smooth chemical-potential
profile pu(x) at t = 0. Suppose there is some finite £ > 0 so that

M(Q:),K(J,‘)’/U(x) — {ML’KLavL for x < _g’

ur, Kr,vp for x > +/.

v(z)
K(z)

Due to universality of

K(y)
T (y)

(p) and equilibrium before the quench:

(p(y,0)) = w(y), (1(y,0)) =0.
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Transport in quantum wire

Consider a quantum quench turning off a smooth chemical-potential
profile pu(x) at t = 0. Suppose there is some finite £ > 0 so that

lu(x))K(l'),’U(;p) — {ML,KL,UL for x < _g’

ur, Kr,vp for x > +/.

Due to universality of ]”(((3;)) {p) and equilibrium before the quench:

K(y)

,0)) = , ,0)) =0. L/\f
{p(y,0)) 7TU(y)u(y) (1(y,0)) f
Inserted into the ¢ > 1 expression for : ﬁ

lim (j(z, t)) = 2 —H=

t—o00 2

with uy = Kppr and - = Kpug.
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Summary



&

Showed that the dynamics of inhomogeneous TLLs are described
by inhomogeneous DBdG equations.

Obtained general solution of the DBdG equations.

Derived explicit results at late time or at stationarity that
generalize known results in the literature.

Used results to study coupled FQH edges, quantum wires, and
quantum quenches.

Results applicable whenever DBdG-type equations appear and
approach directly generalizable to other algebras than s[(2,C).

Interesting to extend to heat transport and correlation functions.

Thank you for your attention!



	Tomonaga-Luttinger liquids / Compactified free bosons
	Examples of TLLs
	Why PDE approach?
	DBdG equations from TLL theory
	Solving the DBdG equations
	Application to quantum wires

