Towards a mathematical theory of the ODE／IM correspondence

Davide Masoero
Grupo de Física Matemática da Universidade de Lisboa
With the support of the FCT Project UIDB／00208／2020

Integrability in Condensed Matter and Quantum Field Theories

SWISS MAP Les Diablerets， 7 February 2023

士モも Fundaçá
para
a cie para a Ciēncia

References

The talk is based on three recent papers with R. Conti and A. Raimondo:

- R. Conti and D.M., On solutions of the Bethe Ansatz for the Quantum KdV model. arXiv 2022
- R. Conti and D.M., Counting Monster Potentials. JHEP 2021
- D.M. and Andrea Raimondo, Opers for higher states of quantum KdV models, Commm. Math. Phys, 2020.
And ongoing work with G. Degano, E. Mukhin, and A. Raimondo.

Plan of the talk

- Introduction
- If the momentum is large enough, the Destri-De Vega equation for Quantum KdV is well-posed.
- The monster potentials are complete (proven up to a technical assumption)

Plan of the talk

- Introduction
- If the momentum is large enough, the Destri-De Vega equation for Quantum KdV is well-posed.
- The monster potentials are complete (proven up to a technical assumption).

Linear ODEs and Math Phys

It is a general fact that many interesting objects in mathematical physics can be expressed via the (generalised) monodromy data of a of linear ODE in the complex plane.

Quantum field theories \& related geometrical objects often
correspond to equations with irregular singularities (e.g. Frobenius manifolds and TQFT, ODE/IM correspondence).
This correspondence is somehow mediated by the Nonlinear Stokes Phenomenon (Wall-Crossing).

Linear ODEs and Math Phys

It is a general fact that many interesting objects in mathematical physics can be expressed via the (generalised) monodromy data of a of linear ODE in the complex plane.

Quantum field theories \& related geometrical objects often correspond to equations with irregular singularities (e.g. Frobenius manifolds and TQFT, ODE/IM correspondence).
This correspondence is somehow mediated by the Nonlinear Stokes Phenomenon (Wall-Crossing).

(About names)

'ODE/IM correspondence' and 'ODE/IQFT correspondence' are two different names for the same thing.

We should all agree to use the same name.

Bethe Equations for Quantum KdV

Fix $\alpha>0, p \geq 0$ (in most of this talk, $\alpha>1$).
We look for a real entire function $Q(E)$ of order $\frac{1+\alpha}{2 \alpha}$ such that

- All roots are simple, zero is not a root $(Q(0)=1)$.
- (Almost) all roots are real and positive.
- The counting function $n(E)$ satisfies $\lim _{E \rightarrow+\infty} \frac{n(E)}{E^{\frac{1+\alpha}{2 \alpha}}}=1$.
- If E_{*} is a root, then

$$
e^{-i 4 \pi p} \frac{Q\left(e^{-\frac{2 \pi i}{\alpha+1}} E_{*}\right)}{Q\left(e^{\frac{2 \pi i}{\alpha+1}} E_{*}\right)}=-1
$$

Additional hypothesis: number of holes are finite.

Bethe Equations for Quantum KdV

Fix $\alpha>0, p \geq 0$ (in most of this talk, $\alpha>1$).
We look for a real entire function $Q(E)$ of order $\frac{1+\alpha}{2 \alpha}$ such that

- All roots are simple, zero is not a root $(Q(0)=1)$.
- (Almost) all roots are real and positive.
- The counting function $n(E)$ satisfies $\lim _{E \rightarrow+\infty} \frac{n(E)}{E^{\frac{1+\alpha}{2 \alpha}}}=1$.
- If E_{*} is a root, then

$$
e^{-i 4 \pi p} \frac{Q\left(e^{-\frac{2 \pi i}{\alpha+1}} E_{*}\right)}{Q\left(e^{\frac{2 \pi i}{\alpha+1}} E_{*}\right)}=-1
$$

Additional hypothesis: number of holes are finite.

$$
Q\left(E_{*}\right)=0 \Longrightarrow e^{-i 4 \pi p} \frac{Q\left(e^{-\frac{2 \pi i}{\alpha+1}} E_{*}\right)}{Q\left(e^{\frac{2 \pi i}{\alpha+1}} E_{*}\right)}=-1
$$

- Edge asymptotics of Bethe roots for XXZ with $-1<\Delta<1$ (cf. H. Boos talk).
- Bethe Equations satisfied by the eigenvalues of the \mathcal{Q}_{+} operator of Quantum KdV
(Bazhanov-Lukyanov-Zamolodchikov '94-'96).

$$
c=1-\frac{6 \alpha^{2}}{\alpha+1}, \Delta=p^{2}(1+\alpha)-\frac{\alpha^{2}}{4 \alpha+4} .
$$

- The same equations are also satisfied by spectral determinants of some anharmonic oscillator (Dorey-Tateo '98 \& BLZ '98).

- Problem: Classify solutions of the BE whose roots are all real and positive.
- Introducing the 'counting function',

$$
z(E)=-2 p+\frac{1}{2 \pi i} \log \frac{Q\left(e^{-i \frac{2 \pi}{\alpha+1}} E\right)}{Q\left(e^{i \frac{2 \pi}{\alpha+1}} E\right)}, E \geq 0, z(0)=-2 p
$$

- BE reads $Q\left(E_{*}\right)=0 \Longrightarrow z\left(E_{*}\right)-\frac{1}{2} \in \mathbb{Z}$
- To classify solution we must add information on which quantum numbers are occupied.

Roots and Holes

- $E_{k}: z\left(E_{k}\right)=k+\frac{1}{2}$ with $k \in \mathbb{Z}, k \geq-2 p+\frac{1}{2}$
- k is a root number if $Q\left(E_{k}\right)=0$, a hole-number otherwise.
- Root numbers form as increasing sequence $\left\{k_{n}\right\}_{n \in \mathbb{N}}$
- Now the BE reads

$$
z\left(E_{k_{n}}\right)=k_{n}+\frac{1}{2}, n \in \mathbb{N}, \text { with } Q(E)=\prod_{n}\left(1-\frac{E}{E_{k_{n}}}\right) .
$$

We want to study well-posedness of the above equation, when the sequence $\left\{k_{n}\right\}_{n \in \mathbb{N}}$ is given.

Roots and integer partitions

Root-numbers are sequences that stabilizes: $k_{n}=n$, if $n \gg 0$.
\Downarrow
Root-numbers sequences are classified by integer partitions $\left\{k_{n}^{\lambda}\right\}_{n \in \mathbb{N}}$.

The ODE/IM Conjecture for Quantum KdV

Bazhanov-Lukyanov-Zamolodchikov, Adv. Theor. Math. Phys., (2003) made the following conjecture:
(1) Let $N \in \mathbb{N}$ and $2 p \geq N+\frac{1}{2}$. For every $\lambda \vdash N$, the BE admit a unique (normalised) solution $Q^{\lambda}(E ; p)$ whose sequence of root-numbers coincide with $\left\{k_{n}^{\lambda}\right\}_{n \in \mathbb{N}}$.
(3) Any such solution of the BE coincides with the spectral determinant of a certain anharmonic oscillator.

Bazhanov-Lukyanov-Zamolodchikov, Adv. Theor. Math. Phys., (2003) made the following conjecture:
(1) Let $N \in \mathbb{N}$ and $2 p \geq N+\frac{1}{2}$. For every $\lambda \vdash N$, the BE admit a unique (normalised) solution $Q^{\lambda}(E ; p)$ whose sequence of root-numbers coincide with $\left\{k_{n}^{\lambda}\right\}_{n \in \mathbb{N}}$.
(2) Any such solution of the BE coincides with the spectral determinant of a certain anharmonic oscillator.

Our results. 1. Well-posedness of BE

(1) Theorem, M. - Conti 2022

Fix $\alpha>1,(N, \lambda \vdash N)$.
If p is sufficiently large:

1. The BE admit a unique solution $Q^{\lambda}(E ; p)$ whose sequence of root-numbers coincide with $\left\{k_{n}^{\lambda}\right\}_{n \in \mathbb{N}}$.
2. $\forall n \in \mathbb{N}, \exists C_{n}>0$ such that

$$
\left|\frac{E_{k_{n}}(p)}{p^{\frac{2 \alpha}{1+\alpha}}}-\left[A+B\left(k_{n}+\frac{1}{2}\right) \frac{1}{p}\right]\right| \leq \frac{C_{n}}{p^{2}} .
$$

3. Uniform asymptotics of z and of roots.

Earlier results in the mathematical literature

- Well-posedness for $\alpha>1, p=\frac{1}{2 \alpha+2}$ and $\lambda=\emptyset$ by A. Avila in Comm. Math. Phys. (2004) - after Voros.
- Well-posedness for 2α integer and $\lambda=\emptyset$ by Hilfiker and Runke, Ann. Henri Poincaré (2020), using TBA.

> Remark. A variational approach (à la Yang \& Yang) should yield sharp bound on the range of p for which BE with real roots only is well-posed.

The range $0<\alpha<1$ seems more difficult to study.

Earlier results in the mathematical literature

- Well-posedness for $\alpha>1, p=\frac{1}{2 \alpha+2}$ and $\lambda=\emptyset$ by A. Avila in Comm. Math. Phys. (2004) - after Voros.
- Well-posedness for 2α integer and $\lambda=\emptyset$ by Hilfiker and Runke, Ann. Henri Poincaré (2020), using TBA.

Remark. A variational approach (à la Yang \& Yang) should yield sharp bound on the range of p for which BE with real roots only is well-posed.

The range $0<\alpha<1$ seems more difficult to study.

Strategy of the proof

- Transform the logarithmic BE into a Free-Boundary Nonlinear Integral Equation (known as Destri-De Vega).
- Linearise in the large p limit and do perturbation analysis.

The strategy is standard, the analysis is completely new.

Destri-De Vega Integral Equation

Given $\lambda \vdash N$, let $H=\#\{$ holes greater than the lowest root $\}$. The unknown is a tuple $\left(\omega, h_{1}, \ldots, h_{H}, z\right)$

- $\omega>0$, the left endpoint of the integration interval $[\omega,+\infty[$;
- $h_{1}<\cdots<h_{H}$ are the holes greater than the lowest root;
- z : $C^{1}\left(\left[\omega, \infty[)\right.\right.$, strictly monotone, $z(E) \sim E^{\frac{1+\alpha}{2 \alpha}}, x \rightarrow+\infty$.

Destri-De Vega Integral Equation II

The Destri-De Vega (DDV) is a free-boundary nonlinear integral equation:

$$
\begin{aligned}
& \text { 1. } z(E)=-2 p+\int_{\omega}^{\infty} K_{\alpha}(E / y)\left\lceil z(y)-\frac{1}{2}\right\rceil \frac{d y}{y}+H F_{\alpha}\left(\frac{E}{\omega}\right) \\
& -\sum_{j=1}^{H} F_{\alpha}\left(\frac{E}{h_{k}}\right), K_{\alpha}(x)=x F_{\alpha}^{\prime}(x)=\frac{\sin \left(\frac{2 \pi}{1+\alpha}\right)}{\frac{1}{\pi}} \frac{x}{1+x^{2}-2 x \cos \left(\frac{2 \pi}{1+\alpha}\right)} \\
& \text { 2. }\left\lceil z(\omega)-\frac{1}{2}\right\rceil=-H \\
& \text { 3. } z\left(h_{j}\right)=\sigma(j)+\frac{1}{2}, j=1 \ldots H, \sigma(j)=\text { quantum number of } h_{j} \\
& \text { Remark. If } z \text { is a strictly increasing real analytic function }
\end{aligned}
$$

Destri-De Vega Integral Equation II

The Destri-De Vega (DDV) is a free-boundary nonlinear integral equation:

$$
\begin{aligned}
& \text { 1. } z(E)=-2 p+\int_{\omega}^{\infty} K_{\alpha}(E / y)\left\lceil z(y)-\frac{1}{2}\right\rceil \frac{d y}{y}+H F_{\alpha}\left(\frac{E}{\omega}\right) \\
& -\sum_{j=1}^{H} F_{\alpha}\left(\frac{E}{h_{k}}\right), K_{\alpha}(x)=x F_{\alpha}^{\prime}(x)=\frac{\sin \left(\frac{2 \pi}{1+\alpha}\right)}{\pi} \frac{x}{1+x^{2}-2 x \cos \left(\frac{2 \pi}{1+\alpha}\right)} \\
& \text { 2. }\left\lceil z(\omega)-\frac{1}{2}\right\rceil=-H \\
& \text { 3. } z\left(h_{j}\right)=\sigma(j)+\frac{1}{2}, j=1 \ldots H, \sigma(j)=\text { quantum number of } h_{j}
\end{aligned}
$$

Remark. If z is a strictly increasing real analytic function

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{\pi} \operatorname{lm} \log \left(1+e^{2 \pi i z(x+i \varepsilon)}\right)=z-\left\lceil z-\frac{1}{2}\right\rceil
$$

Large p Linearisation $=$ WKB

$$
z_{\omega, p}(E)=-2 p+\int_{\omega}^{\infty} K_{\alpha}(E / y) z_{\omega, p}(y) \frac{d y}{y}, z_{\omega, p}(E) \sim E^{\frac{\alpha+1}{2 \alpha}}, x \rightarrow \infty
$$

It is a Wiener-Hopf equation, solutions can be expressed via

$$
\tau(\xi)=\frac{1}{2 \pi i} \int_{\delta-i \infty}^{\delta+i \infty} \frac{\frac{\alpha s}{1+\alpha}}{2 \sqrt{\pi}(1+\alpha)^{s-1}}\left\ulcorner\frac{\Gamma\left(-\frac{1}{2}-\frac{\alpha s}{1+\alpha}\right) \Gamma\left(1-\frac{s}{1+\alpha}\right)}{s^{2}\ulcorner(-s)} \xi^{-s} d s, \quad \xi=x / \omega .\right.
$$

We discovered a (much more useful) formula in terms of a WKB integral

This is a first hint of the ODE/IM correspondence.

Large p Linearisation $=$ WKB

$$
z_{\omega, p}(E)=-2 p+\int_{\omega}^{\infty} K_{\alpha}(E / y) z_{\omega, p}(y) \frac{d y}{y}, z_{\omega, p}(E) \sim E^{\frac{\alpha+1}{2 \alpha}}, x \rightarrow \infty
$$

It is a Wiener-Hopf equation, solutions can be expressed via

$$
\tau(\xi)=\frac{1}{2 \pi i} \int_{\delta-i \infty}^{\delta+i \infty} \frac{\frac{\alpha s}{1+\alpha}}{2 \sqrt{\pi}(1+\alpha)^{s-1}}\left\ulcorner\frac{\Gamma\left(-\frac{1}{2}-\frac{\alpha s}{1+\alpha}\right) \Gamma\left(1-\frac{s}{1+\alpha}\right)}{s^{2}\ulcorner(-s)} \xi^{-s} d s, \quad \xi=x / \omega .\right.
$$

We discovered a (much more useful) formula in terms of a WKB integral

$$
\tau(\xi)=\frac{1}{\pi} \int_{u_{-}}^{u_{+}} \sqrt{u^{2} \xi-u^{2 \alpha+2}-1} \frac{d u}{u}, \sqrt{\cdots} \mid u=u_{ \pm}=0 .
$$

This is a first hint of the ODE/IM correspondence.

We need to analyse integrals like

$$
\begin{aligned}
& A_{p}[f, \varepsilon]=\int_{1}^{\infty} K_{\alpha}\left(\frac{x}{y}\right)\langle p f(y)+\varepsilon(y)\rangle \frac{d y}{y},\langle z\rangle=z-\left\lceil z-\frac{1}{2}\right\rceil \\
& B_{p}[f, \varepsilon]=\int_{1}^{\infty} K_{\alpha}\left(\frac{x}{y}\right)\left\lceil p f(y)+\varepsilon(y)-\frac{1}{2}\right\rceil \frac{d y}{y}
\end{aligned}
$$

As an example, we showed that if $f \sim x^{\frac{\alpha+1}{2 \alpha}}$ and $\varepsilon, \tilde{\varepsilon}$ are bounded (+ some further hypotheses), then

\Longrightarrow contractiveness of the perturbation operator $B_{p}[I, \cdot]$ when p is

 large.
Perturbation/Analytical challenges

We need to analyse integrals like

$$
\begin{aligned}
& A_{p}[f, \varepsilon]=\int_{1}^{\infty} K_{\alpha}\left(\frac{x}{y}\right)\langle p f(y)+\varepsilon(y)\rangle \frac{d y}{y},\langle z\rangle=z-\left\lceil z-\frac{1}{2}\right\rceil \\
& B_{p}[f, \varepsilon]=\int_{1}^{\infty} K_{\alpha}\left(\frac{x}{y}\right)\left\lceil p f(y)+\varepsilon(y)-\frac{1}{2}\right\rceil \frac{d y}{y}
\end{aligned}
$$

As an example, we showed that if $f \sim x^{\frac{\alpha+1}{2 \alpha}}$ and $\varepsilon, \tilde{\varepsilon}$ are bounded (+ some further hypotheses), then

$$
\left|\left\|B_{p}[f, \varepsilon]-B_{p}[f, \tilde{\varepsilon}]\right\|_{\infty}-\frac{\alpha+1}{2 \alpha}\|\varepsilon-\tilde{\varepsilon}\|_{\infty}\right| \lesssim f \frac{\|\varepsilon-\tilde{\varepsilon}\|_{\infty}}{p}
$$

\Longrightarrow contractiveness of the perturbation operator $B_{p}[/, \cdot]$ when p is large.

$$
-\Psi^{\prime \prime}(x)+\left(x^{2 \alpha}+\frac{\ell(\ell+1)}{x^{2}}-E\right) \Psi(x)=0, \alpha>1, \ell \geq 0, E \in \mathbb{C}
$$

E is said an eigenvalue if $\exists \Psi \neq 0$ such that

$$
\lim _{x \rightarrow 0^{+}} \Psi(x)=\lim _{x \rightarrow+\infty} \Psi(x)=0
$$

The spectrum is discrete, simple and positive, $E_{n}(\ell), n \in \mathbb{N}$:

Spectral determinant $D_{\ell}(E)$ is an entire function of order $\frac{1+\alpha}{2 \alpha}$

$$
-\Psi^{\prime \prime}(x)+\left(x^{2 \alpha}+\frac{\ell(\ell+1)}{x^{2}}-E\right) \Psi(x)=0, \alpha>1, \ell \geq 0, E \in \mathbb{C}
$$

E is said an eigenvalue if $\exists \Psi \neq 0$ such that

$$
\lim _{x \rightarrow 0^{+}} \Psi(x)=\lim _{x \rightarrow+\infty} \Psi(x)=0
$$

The spectrum is discrete, simple and positive, $E_{n}(\ell), n \in \mathbb{N}$:

$$
E_{n}(\ell)=\left(\frac{2 \Gamma\left(\frac{2 \alpha+1}{2 \alpha}\right)}{\sqrt{\pi} \Gamma\left(\frac{3 \alpha+1}{2 \alpha}\right)}\right)^{-\frac{2 \alpha}{\alpha+1}}(4 n+2 \ell+3)^{\frac{2 \alpha}{\alpha+1}}\left(1+O\left(n^{-1}\right)\right)
$$

Spectral determinant $D_{\ell}(E)$ is an entire function of order $\frac{1+\alpha}{2 \alpha}$.

Monster potentials, BLZ (2003)

1. Let R be a monic polynomial of degree N. The spectral determinant $D_{\ell}^{R}(E)$ for the potential

$$
V^{R}=x^{2 \alpha}+\frac{\ell(\ell+1)}{x^{2}}-2 \frac{d^{2}}{d x^{2}} \log R\left(x^{2 \alpha+2}\right)
$$

satisfies the BE if the monodromy about the additional poles is trivial for every E.
2. Assuming that the roots of R are distinct, the trivial monodromy is equivalent to the BLZ system

Monster potentials, BLZ (2003)

1. Let R be a monic polynomial of degree N. The spectral determinant $D_{\ell}^{R}(E)$ for the potential

$$
V^{R}=x^{2 \alpha}+\frac{\ell(\ell+1)}{x^{2}}-2 \frac{d^{2}}{d x^{2}} \log R\left(x^{2 \alpha+2}\right)
$$

satisfies the BE if the monodromy about the additional poles is trivial for every E.
2. Assuming that the roots of R are distinct, the trivial monodromy is equivalent to the BLZ system

$$
\sum_{j \neq k} \frac{z_{k}\left(z_{k}^{2}+(3+\alpha)(1+2 \alpha) z_{k} z_{j}+\alpha(1+2 \alpha) z_{j}^{2}\right)}{\left(z_{k}-z_{j}\right)^{3}}-\frac{\alpha z_{k}}{4(1+\alpha)}+\Delta(\ell, \alpha)=0, \quad k=1, \ldots, N .
$$

Wronskian of Hermite polynomials

Rational extensions of the harmonic oscillator

- A rational extension of degree N is a potential

$$
V^{U}(t)=t^{2}-2 \frac{d^{2}}{d t^{2}} \ln U(t)
$$

where U a polynomial of degree N such that all monodromies of $\psi^{\prime \prime}(t)=\left(V^{U}(t)-E\right) \psi$ are trivial for every E.

- Oblomkov's theorem (1999)

$$
U \propto U^{\lambda}:=W r\left[H_{\lambda_{1}+j-1}, \ldots, H_{\lambda_{j}}\right], \text { for a } \lambda:=\left(\lambda_{1}, \ldots, \lambda_{j}\right) \vdash N .
$$

Large momentum limit of Monster Potentials

(2) (Conditional) Theorem, M. - Conti 2021/2022

- We noticed that in the large momentum multi-scale limit, monster potentials converge to rational extensions of the harmonic oscillator:
Assume there exists a sequence R_{ℓ} of monster potentials with $\ell \rightarrow \infty$, then - up to subsequences -

$$
z_{k}=\frac{\ell^{2}}{\alpha}+\frac{(2 \alpha+2)^{\frac{3}{4}}}{\alpha} v_{k}^{\lambda} \ell^{\frac{3}{2}}+O(\ell), k=1, \ldots, N
$$

where v_{k}^{λ} are the roots of U^{λ}.

Large momentum limit of Monster Potentials

(2) (Conditional) Theorem, M. - Conti 2021/2022

- We noticed that in the large momentum multi-scale limit, monster potentials converge to rational extensions of the harmonic oscillator:
Assume there exists a sequence R_{ℓ} of monster potentials with
$\ell \rightarrow \infty$, then - up to subsequences -

$$
z_{k}=\frac{\ell^{2}}{\alpha}+\frac{(2 \alpha+2)^{\frac{3}{4}}}{\alpha} v_{k}^{\lambda} \ell^{\frac{3}{2}}+O(\ell), k=1, \ldots, N
$$

where v_{k}^{λ} are the roots of U^{λ}.

- (If a monster potential with a such an asymptotics exists and) $D_{\ell}^{\lambda}(E)$ is the corresponding spectral determinant, then

$$
D^{\lambda}(E ; \ell)=Q^{\lambda}(E / \eta ; p), p=\frac{2 \ell+1}{\alpha+1} \text { and } \eta=\left(\frac{2 \sqrt{\pi} r\left(\frac{3}{2}+\frac{1}{2 \alpha}\right)}{\Gamma\left(1+\frac{1}{2 \alpha}\right)}\right)^{\frac{2 \alpha}{1+\alpha}}
$$

An unproven identity

Let $\lambda \vdash N$, assume U^{λ} has N distinct zeroes (see conjecture by Felder-Hemery-Veselov 2010). Consider the Jacobian

$$
J_{i j}^{\lambda}=\delta_{i j}\left(1+\sum_{l \neq j} \frac{6}{\left(v_{i}^{\lambda}-v_{j}^{\lambda}\right)^{4}}\right)-\left(1-\delta_{i j}\right) \frac{6}{\left(v_{i}^{\lambda}-v_{j}^{\lambda}\right)^{4}}, i, j=1, \ldots, N .
$$

An unproven identity

Let $\lambda \vdash N$, assume U^{λ} has N distinct zeroes (see conjecture by Felder-Hemery-Veselov 2010). Consider the Jacobian

$$
J_{i j}^{\lambda}=\delta_{i j}\left(1+\sum_{l \neq j} \frac{6}{\left(v_{i}^{\lambda}-v_{j}^{\lambda}\right)^{4}}\right)-\left(1-\delta_{i j}\right) \frac{6}{\left(v_{i}^{\lambda}-v_{j}^{\lambda}\right)^{4}}, i, j=1, \ldots, N .
$$

We found an explicit (albeit unproven) formula for the eigenvalues of J^{λ} : these are square of the hook-lengths of the partition.
$\lambda=(N)$ stated/proven in Ahmed, Bruschi, Calogero, Olshanetsky, and Perelomov ('79).

The Big ODE/IM Conjecture

The Big ODE/IM Conjecture

If a QFT is Bethe Integrable then the corresponding solutions of the Bethe Equations are spectral determinants of linear differential operators.
\rightarrow Bethe Roots are eigenvalues of a (possibly self-adjoint) differential operator (cf. Hilbert-Pólya Conjecture).

The Big ODE/IM Conjecture

The Big ODE/IM Conjecture

If a QFT is Bethe Integrable then the corresponding solutions of the Bethe Equations are spectral determinants of linear differential operators.
\rightarrow Bethe Roots are eigenvalues of a (possibly self-adjoint) differential operator (cf. Hilbert-Pólya Conjecture).

```
M - Raimondo (- Valeri) ('16,'17, '20, ongoing) after
Feigin-Frenkel (2011)
```

$\widehat{\mathfrak{g}}$ an affine Kac-Moody Lie-algebra and ${ }^{L} \widehat{\mathfrak{g}}$ the Langlands dual,
$\{$ Bethe states of $\widehat{\mathfrak{g}}$ - quantum KdV$\} \leftrightarrow \cdots \rightarrow\left\{\widehat{\mathfrak{g}}-\right.$ opers on $\left.\mathbb{C}^{*}\right\}$.

Open questions? A lot

The ODE/IM correspondence for Quantum KdV is just a tiny piece of an enormous field of research of which we know a lot but still very little.
> - How do we guess which ODE (if any) corresponds to a given Quantum Field Theory?
> - Once, they are found, how do we prove them?
> - Why the ODE/IM correspondence? Can we find a theory? Why is the nonlinear Stokes phenomenon that important?

Open questions? A lot

The ODE/IM correspondence for Quantum KdV is just a tiny piece of an enormous field of research of which we know a lot but still very little.

- How do we guess which ODE (if any) corresponds to a given Quantum Field Theory?
- Once, they are found, how do we prove them?
- Why the ODE/IM correspondence? Can we find a theory? Why is the nonlinear Stokes phenomenon that important?

