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Plan of the talk

Introduction

If the momentum is large enough, the Destri-De Vega
equation for Quantum KdV is well-posed.

The monster potentials are complete (proven up to a
technical assumption).
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Linear ODEs and Math Phys

It is a general fact that many interesting objects in mathematical
physics can be expressed via the (generalised) monodromy data of
a of linear ODE in the complex plane.

Quantum field theories & related geometrical objects often
correspond to equations with irregular singularities (e.g. Frobenius
manifolds and TQFT, ODE/IM correspondence).
This correspondence is somehow mediated by the Nonlinear Stokes
Phenomenon (Wall-Crossing).
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(About names)

‘ODE/IM correspondence’ and ‘ODE/IQFT correspondence’ are
two different names for the same thing.

We should all agree to use the same name.
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Bethe Equations for Quantum KdV

Fix α > 0, p ≥ 0 (in most of this talk, α > 1).
We look for a real entire function Q(E ) of order 1+α

2α such that

All roots are simple, zero is not a root (Q(0) = 1).

(Almost) all roots are real and positive.

The counting function n(E ) satisfies limE→+∞
n(E)

E
1+α
2α

= 1.

If E∗ is a root, then

e−i4πpQ
(
e−

2πi
α+1E∗

)
Q
(
e

2πi
α+1E∗

) = −1.

Additional hypothesis: number of holes are finite.
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Where do they appear?

Q(E∗) = 0 =⇒ e−i4πpQ
(
e−

2πi
α+1E∗

)
Q
(
e

2πi
α+1E∗

) = −1.

Edge asymptotics of Bethe roots for XXZ with −1 < ∆ < 1
(cf. H. Boos talk).

Bethe Equations satisfied by the eigenvalues of the Q+

operator of Quantum KdV
(Bazhanov-Lukyanov-Zamolodchikov ’94-’96).

c = 1− 6α2

α+ 1
,∆ = p2(1 + α)− α2

4α+ 4
.

The same equations are also satisfied by spectral determinants
of some anharmonic oscillator (Dorey-Tateo ’98 & BLZ ’98).
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The ODE/IM Conjecture for Quantum KdV

Bethe States
of

Quantum KdV

$$

//
Anharmonic osc.

with
Monster potential

oo

yy

solutions of BE
zeroes are almost all

real and positive
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Topological classification of purely real solutions

Problem: Classify solutions of the BE whose roots are all real
and positive.

Introducing the ‘counting function’,

z(E ) = −2p +
1

2πi
log

Q
(
e−i 2π

α+1E
)

Q
(
e i

2π
α+1E

) ,E ≥ 0, z(0) = −2p.

BE reads Q(E∗) = 0 =⇒ z(E∗)− 1
2 ∈ Z

To classify solution we must add information on which
quantum numbers are occupied.
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Roots and Holes

Ek : z(Ek) = k + 1
2 with k ∈ Z, k ≥ −2p + 1

2

k is a root number if Q(Ek) = 0, a hole-number otherwise.

Root numbers form as increasing sequence {kn}n∈N
Now the BE reads

z(Ekn) = kn +
1

2
, n ∈ N, with Q(E ) =

∏
n

(
1− E

Ekn

)
.

We want to study well-posedness of the above equation, when the
sequence {kn}n∈N is given.
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Roots and integer partitions

Root-numbers are sequences that stabilizes: kn = n, if n ≫ 0.

⇓

Root-numbers sequences are classified by integer partitions
{kλn }n∈N.
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The ODE/IM Conjecture for Quantum KdV

Bazhanov-Lukyanov-Zamolodchikov, Adv. Theor. Math. Phys.,
(2003) made the following conjecture:

1 Let N ∈ N and 2p ≥ N + 1
2 . For every λ ⊢ N, the BE admit a

unique (normalised) solution Qλ(E ; p) whose sequence of
root-numbers coincide with {kλn }n∈N.

2 Any such solution of the BE coincides with the spectral
determinant of a certain anharmonic oscillator.
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Our results. 1. Well-posedness of BE

(1) Theorem, M. - Conti 2022

Fix α > 1, (N, λ ⊢ N).
If p is sufficiently large:

1. The BE admit a unique solution Qλ(E ; p) whose sequence of
root-numbers coincide with {kλn }n∈N.

2. ∀n ∈ N, ∃Cn > 0 such that∣∣∣∣∣Ekn(p)

p
2α
1+α

−
[
A+ B

(
kn +

1

2

)
1

p

]∣∣∣∣∣ ≤ Cn

p2
.

3. Uniform asymptotics of z and of roots.
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Earlier results in the mathematical literature

Well-posedness for α > 1, p = 1
2α+2 and λ = ∅ by A. Avila in

Comm. Math. Phys. (2004) - after Voros.

Well-posedness for 2α integer and λ = ∅ by Hilfiker and
Runke, Ann. Henri Poincaré (2020), using TBA.

Remark. A variational approach (à la Yang & Yang) should yield
sharp bound on the range of p for which BE with real roots only is
well-posed.

The range 0 < α < 1 seems more difficult to study.
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Strategy of the proof

Transform the logarithmic BE into a Free-Boundary Nonlinear
Integral Equation (known as Destri-De Vega).

Linearise in the large p limit and do perturbation analysis.

The strategy is standard, the analysis is completely new.
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Destri-De Vega Integral Equation

Given λ ⊢ N, let H = #{holes greater than the lowest root}.
The unknown is a tuple (ω, h1, . . . , hH , z)

ω > 0, the left endpoint of the integration interval [ω,+∞[;

h1 < · · · < hH are the holes greater than the lowest root;

z : C 1([ω,∞[), strictly monotone, z(E ) ∼ E
1+α
2α , x → +∞.

Davide Masoero GFMUL



Destri-De Vega Integral Equation II

The Destri-De Vega (DDV) is a free-boundary nonlinear integral
equation:

1. z(E ) = −2p +

∫ ∞

ω
Kα(E/y)

⌈
z(y)− 1

2

⌉
dy

y
+ H Fα

(
E

ω

)
−

H∑
j=1

Fα

(
E

hk

)
, Kα(x)=x F ′

α(x)=
sin( 2π

1+α)
π

x

1+x2−2x cos( 2π
1+α)

2.

⌈
z(ω)− 1

2

⌉
= −H

3. z(hj) = σ(j) +
1

2
, j = 1 . . .H, σ(j) = quantum number of hj

Remark. If z is a strictly increasing real analytic function

lim
ε→0+

1

π
Im log

(
1 + e2πi z(x+iε)

)
= z −

⌈
z − 1

2

⌉
Davide Masoero GFMUL



Destri-De Vega Integral Equation II

The Destri-De Vega (DDV) is a free-boundary nonlinear integral
equation:

1. z(E ) = −2p +

∫ ∞

ω
Kα(E/y)

⌈
z(y)− 1

2

⌉
dy

y
+ H Fα

(
E

ω

)
−

H∑
j=1

Fα

(
E

hk

)
, Kα(x)=x F ′

α(x)=
sin( 2π

1+α)
π

x

1+x2−2x cos( 2π
1+α)

2.

⌈
z(ω)− 1

2

⌉
= −H

3. z(hj) = σ(j) +
1

2
, j = 1 . . .H, σ(j) = quantum number of hj

Remark. If z is a strictly increasing real analytic function

lim
ε→0+

1

π
Im log

(
1 + e2πi z(x+iε)

)
= z −

⌈
z − 1

2

⌉
Davide Masoero GFMUL



Large p Linearisation = WKB

zω,p(E ) = −2p+

∫ ∞

ω
Kα(E/y)zω,p(y)

dy

y
, zω,p(E ) ∼ E

α+1
2α , x → ∞.

It is a Wiener-Hopf equation, solutions can be expressed via

τ(ξ)= 1
2πi

∫ δ+i∞
δ−i∞

α
αs
1+α

2
√
π(1+α)s−1

Γ(− 1
2−

αs
1+α)Γ(1− s

1+α)
s2 Γ(−s)

ξ−sds, ξ=x/ω.

We discovered a (much more useful) formula in terms of a WKB
integral

τ(ξ) =
1

π

∫ u+

u−

√
u2ξ − u2α+2 − 1

du

u
,
√
. . .|u=u±

= 0.

This is a first hint of the ODE/IM correspondence.
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Perturbation/Analytical challenges

We need to analyse integrals like

Ap[f , ε] =

∫ ∞

1
Kα

(
x

y

)
⟨pf (y) + ε(y)⟩ dy

y
, ⟨z⟩ = z −

⌈
z − 1

2

⌉
Bp[f , ε] =

∫ ∞

1
Kα

(
x

y

)⌈
pf (y) + ε(y)− 1

2

⌉
dy

y

As an example, we showed that if f ∼ x
α+1
2α and ε, ε̃ are bounded (

+ some further hypotheses), then∣∣∣∣∥Bp[f , ε]− Bp[f , ε̃]∥∞ − α+ 1

2α
∥ε− ε̃∥∞

∣∣∣∣ ≲f
∥ε− ε̃∥∞

p

=⇒ contractiveness of the perturbation operator Bp[l , ·] when p is
large.
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A family of anharmonic oscillators. Dorey Tateo, BLZ ’98

−Ψ′′(x) +

(
x2α +

ℓ(ℓ+ 1)

x2
− E

)
Ψ(x) = 0, α > 1, ℓ ≥ 0,E ∈ C.

E is said an eigenvalue if ∃Ψ ̸= 0 such that

lim
x→0+

Ψ(x) = lim
x→+∞

Ψ(x) = 0.

The spectrum is discrete, simple and positive, En(ℓ), n ∈ N:

En(ℓ) =

(
2Γ
(
2α+1
2α

)
√
πΓ
(
3α+1
2α

))− 2α
α+1

(4n + 2ℓ+ 3)
2α
α+1
(
1 + O(n−1)

)
Spectral determinant Dℓ(E ) is an entire function of order 1+α

2α .
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Monster potentials

Monster potentials, BLZ (2003)

1. Let R be a monic polynomial of degree N. The spectral
determinant DR

ℓ (E ) for the potential

V R = x2α +
ℓ(ℓ+ 1)

x2
−2

d2

dx2
logR(x2α+2)

satisfies the BE if the monodromy about the additional poles is
trivial for every E .
2. Assuming that the roots of R are distinct, the trivial
monodromy is equivalent to the BLZ system

∑
j ̸=k

zk

(
z2k+(3+α)(1+2α)zk zj+α(1+2α)z2j

)
(zk−zj )

3 − αzk
4(1+α)

+∆(ℓ,α)=0 , k=1,...,N.
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Wronskian of Hermite polynomials

Rational extensions of the harmonic oscillator

A rational extension of degree N is a potential

V U(t) = t2 − 2
d2

dt2
lnU(t),

where U a polynomial of degree N such that all monodromies
of ψ′′(t) = (V U(t)− E )ψ are trivial for every E .

Oblomkov’s theorem (1999)

U ∝ Uλ := Wr [Hλ1+j−1, . . . ,Hλj
], for a λ := (λ1, . . . , λj) ⊢ N.
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Large momentum limit of Monster Potentials

(2) (Conditional) Theorem, M. - Conti 2021/2022

We noticed that in the large momentum multi-scale limit,
monster potentials converge to rational extensions of the
harmonic oscillator:
Assume there exists a sequence Rℓ of monster potentials with
ℓ→ ∞, then – up to subsequences –

zk =
ℓ2

α
+ (2α+2)

3
4

α
vλk ℓ

3
2 + O

(
ℓ
)
, k = 1, . . . ,N

where vλk are the roots of Uλ.

(If a monster potential with a such an asymptotics exists and)
Dλ
ℓ (E ) is the corresponding spectral determinant, then

Dλ(E ; ℓ) = Qλ
(
E/η; p

)
, p= 2ℓ+1

α+1
and η=

(
2
√
π Γ( 3

2+
1
2α)

Γ(1+ 1
2α)

) 2α
1+α

.
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An unproven identity

Let λ ⊢ N, assume Uλ has N distinct zeroes (see conjecture by
Felder-Hemery-Veselov 2010). Consider the Jacobian

Jλij = δij

1 +
∑
l ̸=j

6

(vλi − vλj )
4

− (1− δij)
6

(vλi − vλj )
4
, i ,j=1,...,N.

We found an explicit (albeit unproven) formula for the eigenvalues
of Jλ: these are square of the hook-lengths of the partition.

λ=(N) stated/proven in Ahmed, Bruschi, Calogero, Olshanetsky, and Perelomov (’79).
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The Big ODE/IM Conjecture

The Big ODE/IM Conjecture

If a QFT is Bethe Integrable then the corresponding solutions of
the Bethe Equations are spectral determinants of linear
differential operators.
→ Bethe Roots are eigenvalues of a (possibly self-adjoint)
differential operator (cf. Hilbert-Pólya Conjecture).

M - Raimondo (- Valeri) (’16,’17, ’20, ongoing) after
Feigin-Frenkel (2011)

ĝ an affine Kac-Moody Lie-algebra and Lĝ the Langlands dual,{
Bethe states of ĝ− quantum KdV

}
L9999K

{
Lĝ− opers on C∗

}
.
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Open questions? A lot

The ODE/IM correspondence for Quantum KdV is just a tiny
piece of an enormous field of research of which we know a lot but
still very little.

How do we guess which ODE (if any) corresponds to a given
Quantum Field Theory?

Once, they are found, how do we prove them?

Why the ODE/IM correspondence? Can we find a theory?
Why is the nonlinear Stokes phenomenon that important?
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