SEPARATION OF VARIABLES AND CORRELATION FUNCTIONS FROM SPIN CHAINS TO CFT

Fedor Levkovich-Maslyuk

Institut de Physique Theorique, CEA Saclay
based on
$2103.15800,2011.08229,1910.13442,1907.03788,1805.03927,1610.08032$
with Cavaglia, Gromov, Ryan, Sizov, Volin

+ [to appear] with Kazakov, Mishnyakov

Motivation

$\mathrm{N}=4$ super Yang-Mills / strings on AdS5 \times S5

is an integrable theory

For complete solution of $\mathrm{N}=4$ SYM we need:

1) Exact spectrum

$$
\langle\mathcal{O}(x) \mathcal{O}(y)\rangle=\frac{1}{|x-y|^{2 \Delta}}
$$

$$
\mathcal{O}(x)=\operatorname{Tr}\left(\Phi_{1} \Phi_{2} \Phi_{3} \ldots\right)(x)
$$

Well understood
2) Exact 3pt functions

$$
\left\langle\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{3}\left(x_{3}\right)\right\rangle=\frac{C_{123}}{\left|x_{1}-x_{2}\right|^{\Delta_{1}+\Delta_{2}-\Delta_{3}}\left|x_{1}-x_{3}\right|^{\Delta_{1}+\Delta_{3}-\Delta_{2}}\left|x_{2}-x_{3}\right|^{\Delta_{2}+\Delta_{3}-\Delta_{1}}}
$$

Key open problem !

Solution for spectrum

single trace operators

Weak coupling:

$$
\operatorname{Tr}\left(\Phi_{1}(x) \Phi_{2}(x) \Phi_{2}(x) \Phi_{1}(x) \ldots\right)
$$

Finite coupling: Quantum Spectral Curve [Gromov, Kazakov, Leurent, Volin 13]

Difference equations on Baxter functions $Q(u)+$ analytic requirements

$$
g=\frac{\sqrt{\lambda}}{4 \pi}
$$

Huge set of results for spectrum

Numerics
at finite coupling
[Gromov, FLM, Sizov 15]

Perturbatively 10+ loops

$$
\begin{aligned}
\Delta= & 4+12 g^{2}-48 g^{4}+336 g^{6}+\cdots+\# g^{20} \\
& +\mathcal{O}\left(g^{22}\right) \quad \text { [Marboe, Volin] }
\end{aligned}
$$

And much more

Spectrum is known

What about 3pt functions ???

We expect that in any integrable system wavefunctions factorise in a good basis

$$
\langle x \mid \Psi\rangle \sim Q\left(x_{1}\right) Q\left(x_{2}\right) \ldots Q\left(x_{N}\right) \quad \text { Like } \quad \Psi_{\text {Hydrogen }}=F_{1}(r) F_{2}(\theta) F_{3}(\varphi)
$$

Q's should be given by Quantum Spectral Curve at any coupling!
Very promising results for correlators already
[Cavaglia, Gromov, FLM 18]
See also [Giombi, Komatsu [18-20]

$$
\begin{array}{r}
C_{123}=\frac{\left\langle Q_{1} Q_{2} Q_{3}\right\rangle}{\sqrt{\left\langle Q_{1}^{2}\right\rangle\left\langle Q_{2}^{2}\right\rangle\left\langle Q_{3}^{2}\right\rangle}} \\
\langle f\rangle:=\int_{c-i \infty}^{c+i \infty} \frac{\mathrm{~d} u}{2 \pi i u} f(u), \quad c>0
\end{array}
$$

+ very recent results [Basso, Georgoudis, Sueiro 22] [Bercini, Homrich, Vieira 22]
linking with hexagon expansion [Basso, Komatsu, Vieira 15]

SoV should be very powerful
Yet almost undeveloped beyond GL(2) until recently
(for SYM we need $\operatorname{PSU}(2,2 \mid 4)$)

Also important for spin chains/cond-mat, seminal results for $G L(2)$ models
[Derkachov, Frahm, Kitanine, Korchemsky, Kozlowski, Maillet, Niccoli, Terras, Teschner, Smirnov, ...]

PLEASE KEEP 2 METRES APART

Focus of this talk: SoV for $G L(N)$ spin chains

hydrogen atom

$$
\begin{aligned}
\Psi_{n l m}(r, \theta, \phi) & =R(r) P(\theta) F(\phi) \\
\left\langle\Psi_{n l m} \mid \Psi_{n^{\prime} l^{\prime} m^{\prime}}\right\rangle & =\int \mathrm{d} r \mathrm{~d} \phi \mathrm{~d} \theta r^{2} \sin ^{2} \theta \Psi_{n m l}^{*} \Psi_{n^{\prime} m^{\prime} l^{\prime}}=\delta_{n n^{\prime}} \delta_{m m^{\prime}} \delta_{l l^{\prime}}
\end{aligned}
$$

We will answer both
[review: FLM to appear, invited review for J Phys A]

Plan

- Construction of SoV basis
- Finding the measure
- Extensions to field theory and Yangian symmetry

The SoV basis

SU(N) spin chains

Full Hilbert space for L sites is $\mathbb{C}^{N} \otimes \mathbb{C}^{N} \otimes \cdots \otimes \mathbb{C}^{N}$
$H=\sum_{n=1}^{L}\left(1-P_{n, n+1}\right)$
(+ boundary terms, i.e. twist)

Monodromy matrix:

$$
\begin{aligned}
& T(u)=R_{a 1}\left(u-\theta_{1}\right) \ldots R_{a L}\left(u-\theta_{L}\right) g \\
& R_{12}(u)=\left(u-\frac{i}{2}\right)+i P_{12}
\end{aligned}
$$

We take generic inhomogeneities θ_{n} and diagonal twist $g=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{\mathrm{N}}\right)$
Transfer matrix $\quad \operatorname{Tr}_{a} T(u)=\sum_{n=0}^{L} T_{n} u^{n} \quad$ gives commuting integrals of motion

Wavefunctions for spin chains - SU(2)

$$
T(u)=\left(\begin{array}{ll}
A(u) & B(u) \\
C(u) & D(u)
\end{array}\right)
$$

We wish to diagonalize
$\tau_{1}(u)=\operatorname{tr} T(u)=A(u)+D(u)$

States are created by operator $B(u)$

$$
|\Psi\rangle=B\left(u_{1}\right) B\left(u_{2}\right) \ldots B\left(u_{M}\right)|0\rangle
$$

Bethe roots
Fixed by $\prod_{n=1}^{L} \frac{u_{j}-\theta_{n}+i / 2}{u_{j}-\theta_{n}-i / 2}=e^{2 i \phi} \prod_{k \neq j}^{L} \frac{u_{j}-u_{k}+i}{u_{j}-u_{k}-i}$
Or by Baxter equation $Q_{\theta}^{-} Q_{1}^{++}+Q_{\theta}^{+} Q_{1}^{--}-\tau_{1} Q_{1}=0$
Impose τ_{1}, Q_{1} are polynomials \rightarrow fix both

$$
\begin{aligned}
Q_{1} & =e^{u \phi} \prod_{k=1}^{M}\left(u-u_{k}\right) \\
Q_{\theta} & =\prod_{n=1}^{L}\left(u-\theta_{n}\right) \\
f^{ \pm} & =f(u \pm i / 2)
\end{aligned}
$$

$|\Psi\rangle=B\left(u_{1}\right) B\left(u_{2}\right) \ldots B\left(u_{M}\right)|0\rangle$
Consider $\langle x|=$ eigenstates of operator $B(u)=\prod_{k=1}^{L}\left(u-x_{k}\right)$

$$
Q_{1}=e^{\phi_{1} u} \prod_{j=1}^{N_{u}}\left(u-u_{j}\right)
$$

$$
\text { Then wavefunctions factorize! } \quad\langle x \mid \Psi\rangle=\prod_{k} Q_{1}\left(x_{k}\right)
$$

Proof: $\left\langle\mathbf{x}_{1} \ldots \mathbf{x}_{L} \mid \Psi\right\rangle=\prod_{k=1}^{L} \prod_{j=1}^{M}\left(u_{j}-\mathbf{x}_{k}\right)=\prod_{k=1}^{L} Q_{1}\left(\mathbf{x}_{k}\right)$
$\mathbf{x}_{k}=\theta_{k} \pm i / 2, \quad k=1, \ldots L$ gives 2^{L} states, i.e. basis of the space - called SoV basis

In practice we need a slight modification

$$
T \rightarrow T^{\text {good }}=K T K^{-1} \quad B \rightarrow B^{\text {good }}
$$

SU(3) case

Sklyanin's proposal $\quad B(u)=T_{13}(u) T_{12 \mid 13}(u-i)+T_{23}(u) T_{12 \mid 23}(u-i) \quad[$ Sklyanin 92]
$T_{j_{1} j_{2} \mid k_{1} k_{2}}(u)=\left|\begin{array}{cc}T_{j_{1} k_{1}}(u) & T_{j_{1} k_{2}}(u+i) \\ T_{j_{2} k_{1}}(u) & T_{j_{2} k_{2}}(u+i)\end{array}\right| \quad$ are the quantum minors

Like for SU(2) it creates states!

$$
|\Psi\rangle=B^{\mathrm{good}}\left(u_{1}\right) \ldots B^{\mathrm{good}}\left(u_{M}\right)|0\rangle
$$

[Gromov, FLM, Sizov 16]

$$
\begin{aligned}
& T \rightarrow T^{\text {good }}=K T K^{-1} \\
& B \rightarrow B^{\text {good }}
\end{aligned}
$$

No nesting, surprisingly much simpler than usual BA

$$
\begin{aligned}
&|\Psi\rangle= \sum_{a_{i}=2,3} F^{a_{1} a_{2} \ldots a_{M}} T_{1 a_{1}}\left(u_{1}\right) T_{1 a_{2}}\left(u_{2}\right) \ldots T_{1 a_{M}}\left(u_{M}\right)|0\rangle \\
& \quad \text { Kulish, Reshetikhin } 83
\end{aligned}
$$

$$
\begin{aligned}
& \prod_{n=1}^{L} \frac{u_{j}-\theta_{n}+i / 2}{u_{j}-\theta_{n}-i / 2}=\frac{\lambda_{2}}{\lambda_{1}} \prod_{k \neq j}^{M} \frac{u_{j}-u_{k}+i}{u_{j}-u_{k}-i} \prod_{k=1}^{R} \frac{u_{j}-v_{k}-i / 2}{u_{j}-v_{k}+i / 2} \\
& \prod_{n=1}^{M} \frac{v_{j}-u_{n}+i / 2}{v_{j}-u_{n}-i / 2}=\frac{\lambda_{3}}{\lambda_{2}} \prod_{k \neq j}^{R} \frac{v_{j}-v_{k}+i}{v_{j}-v_{k}-i}
\end{aligned}
$$

Factorisation of states follows $\quad\langle\mathbf{x} \mid \Psi\rangle=\prod_{k} Q_{1}\left(\mathbf{x}_{k}\right) \quad Q_{1}=e^{\phi_{1} u} \prod_{j=1}^{N_{u}}\left(u-u_{j}\right)$
All this extends to $\operatorname{SU}(\mathrm{N})$

$\underline{S U(N) \text { case }}$

B-operator is built from quantum minors Inspired by classical SoV

$$
B(u)=\sum_{j, \ldots, p} T_{j \mid N}(u) T_{k \mid j N}(u-i) \ldots T_{12 \ldots \mid p N}(u-(N-2) i)
$$

[Smirnov 2000] [Chervov, Falqui, Talalaev 07] [Gromov, FLM, Sizov 16]

Creates states as $\quad|\Psi\rangle=B^{\text {good }}\left(u_{1}\right) \ldots B^{\text {good }}\left(u_{M}\right)|0\rangle \quad \begin{aligned} & \text { For any } \operatorname{SU}(\mathrm{N})! \\ & {[G r o m o v, \text { FLM, Sizov 10] }}\end{aligned}$

$$
B(u)=\prod\left(u-x_{k}\right) \quad\langle x \mid \Psi\rangle=\prod_{k} Q_{1}\left(x_{k}\right) \quad \text { We also found spectrum of } \mathrm{x} \text { 's }
$$

States construction proven by [Liashyk, Slavnov 18] for SU(3) (heroic effort)
Then full proof for $\operatorname{SU}(\mathrm{N})$ [Ryan, Volin 18], who also showed equivalence with another way to build $\langle x|$

$$
\langle x| \sim\langle 0| \hat{T}\left(\theta_{1}+i / 2\right)^{n_{1}} \ldots \hat{T}\left(\theta_{L}+i / 2\right)^{n_{L}}
$$

[Maillet, Niccoli 18,19,20]
Analog of states construction found for super $\operatorname{SU}(1 \mid 2)$ [Gromov, FLM 17]

Computing the SoV measure

For scalar products we need measure
In GL(2)-type models:

$$
\left\langle\Psi_{B} \mid \Psi_{A}\right\rangle=\int d^{L} \mathbf{x}(\underbrace{\prod_{i=1}^{L} Q^{(A)}\left(x_{i}\right)}_{\text {state } A}) \underbrace{M(\mathbf{x})}_{\text {measure }}(\underbrace{\prod_{i=1}^{L} Q^{(B)}\left(x_{i}\right)}_{\text {state } B})
$$

e.g. for $s=-1 / 2$ spin chain

$$
M(\mathbf{x})=\frac{\prod_{j<k}\left(e^{2 \pi x_{j}}-e^{2 \pi x_{k}}\right)\left(x_{j}-x_{k}\right)}{\prod_{j, k}\left(1+e^{2 \pi\left(x_{j}-\theta_{k}\right)}\right)}
$$

Higher rank $G L(N)$ models are complicated

Measure was not known at all, except in classical limit [Smirnov Zeitlin 02]

To compute correlators one inserts the complete basis

$$
\mathbf{1}=\sum_{x} M_{\substack{\text { measure } \\ x}}|x\rangle\langle x|
$$

Overlaps between these states look complicated
Can we find a way around this?

$\underline{\text { SU(2) spin chain }}$

Idea: orthogonality of states must imply same for Qs

Baxter equation can be written as

$$
\hat{O} \circ Q_{1}=0 \quad \hat{O}=\frac{1}{Q_{\theta}^{+}} D^{2}+\frac{1}{Q_{\theta}^{-}} D^{-2}-\frac{\tau_{1}}{Q_{\theta}^{+} Q_{\theta}^{-}}
$$

$$
\begin{aligned}
& f^{ \pm}=f(u \pm i / 2) \\
& D f(u)=f(u+i / 2) \\
& Q_{\theta}=\prod_{n}\left(u-\theta_{n}\right)
\end{aligned}
$$

Key property: self-adjointness

$$
\langle f \hat{O} g\rangle=\langle g \hat{O} f\rangle \quad\langle f\rangle=\oint d u f(u)
$$

We can introduce L such brackets

$$
\langle f\rangle_{j}=\oint d u \mu_{j} f \quad \quad \mu_{j}=e^{2 \pi(j-1) u} \quad j=1, \ldots, L
$$

$$
\tau_{1}=2 \cos \phi u^{L}+\sum_{k=1}^{L} I_{k} u^{k-1} \quad \begin{aligned}
& \text { uniquely identifies } \\
& \text { the state }
\end{aligned}
$$

This gives orthogonality!
$\left\langle Q^{B}\left(\hat{O}^{A}-\hat{O}^{B}\right) Q^{A}\right\rangle_{j}=0 \longrightarrow \sum_{k=1}^{L}\left(I_{k}^{A}-I_{k}^{B}\right)\left\langle\frac{u^{k-1} Q^{A} Q^{B}}{Q_{\theta}^{+} Q_{\theta}^{-}}\right\rangle_{j}=0 \quad \begin{aligned} & \text { Nontrivial solution } \\ & \text { means det=0 }\end{aligned}$

Sum of residues at $u=\theta_{n} \pm i / 2$
$\operatorname{det}_{1 \leq j, k \leq L}\left\langle\frac{u^{k-1} Q^{A} Q^{B}}{Q_{\theta}^{+} Q_{\theta}^{-}}\right\rangle_{j} \propto \delta_{A B}$ i.e. at x eigenvalues as expected \quad Scalar product in SoV

$$
\hat{O}=\frac{1}{Q_{\theta}^{+}} D^{2}+\frac{1}{Q_{\theta}^{-}} D^{-2}-\frac{\tau_{1}}{Q_{\theta}^{+} Q_{\theta}^{-}}
$$

Matches known results
[Sklyanin; Kitanine, Maillet, Niccoli, ...]
[Kazama, Komatsu, Nishimura, Serban, Jiang, ...]

SU(3) spin chain

Now we have 2 types of Bethe roots

$$
\begin{array}{cc}
\prod_{n=1}^{L} \frac{u_{j}-\theta_{n}+i / 2}{u_{j}-\theta_{n}-i / 2}=e^{i\left(\phi_{1}-\phi_{2}\right)} \prod_{k \neq j}^{N_{u}} \frac{u_{j}-u_{k}+i}{u_{j}-u_{k}-i} \prod_{l=1}^{N_{v}} \frac{u_{j}-v_{l}-i / 2}{u_{j}-v_{l}+i / 2} & \text { momentum-carrying }\left\{u_{j}\right\}_{j=1}^{N_{u}} \\
1=e^{i\left(\phi_{2}-\phi_{3}\right)} \prod_{k \neq j}^{N_{v}} \frac{v_{j}-v_{k}+i}{v_{j}-v_{k}-i} \prod_{l=1}^{N_{u}} \frac{v_{j}-u_{l}-i / 2}{v_{j}-u_{l}+i / 2} & \text { auxiliary }\left\{v_{j}\right\}_{j=1}^{N_{v}} \\
Q_{1}=e^{\phi_{1} u} \prod_{j=1}^{N_{u}}\left(u-u_{j}\right) & Q^{2} \equiv e^{\left(\phi_{1}+\phi_{3}\right) u} \prod_{j}\left(u-v_{j}\right)
\end{array}
$$

Main new feature: should use Q^{i} in addition to Q_{i} to get simple measure
Other Qs give dual roots

Baxter equations:

$$
\tau_{a}(u)=u^{L} \chi_{a}(G)+\sum_{j=1}^{L} u^{j-1} I_{a, j-1}
$$

$$
\begin{aligned}
\bar{O} & =\frac{1}{Q_{\theta}^{-}} D^{-3}-\frac{\tau_{2}}{Q_{\theta}^{+} Q_{\theta}^{-}} D^{-1}+\frac{\tau_{1}}{Q_{\theta}^{+} Q_{\theta}^{-}} D-\frac{1}{Q_{\theta}^{+}} D^{+3} \\
O & =\frac{1}{Q_{\theta}^{++}} D^{+3}-\frac{\tau_{2}^{+}}{Q_{\theta}^{++} Q_{\theta}} D+\frac{\tau_{1}^{-}}{Q_{\theta} Q_{\theta}^{--}} D^{-1}-\frac{1}{Q_{\theta}^{--}} D^{-3}
\end{aligned}
$$

$$
\bar{O} \circ Q^{a}=0 \quad O \circ Q_{a}=0
$$

$$
\langle f\rangle_{j}=\oint d u \mu_{j} f
$$

These two operators are conjugate!

$$
\langle f O \circ g\rangle_{j}=\langle g \bar{O} \circ f\rangle_{j}
$$

$$
\left\langle Q_{b}^{B}\left(\bar{O}^{A}-\bar{O}^{B}\right) Q^{a, A}\right\rangle_{j}=0
$$

$\mu_{j}=e^{2 \pi(j-1) u}$
$j=1, \ldots, L$

$$
\tau_{a}(u)=u^{L} \chi_{a}(G)+\sum_{j=1}^{L} u^{j-1} I_{a, j-1},
$$

Linear system:

$$
\sum_{\alpha=\{1,2\}, k=1, \ldots, L}\left(I_{\alpha, k}^{A}-I_{\alpha, k}^{B}\right)(-1)^{\alpha}\left\langle\frac{u^{k} Q_{1}^{B} Q^{a, A[-3+2 \alpha]}}{Q_{\theta}^{+} Q_{\theta}^{-}}\right\rangle_{j}=0
$$

We have 2 L variables, and two choices of a give 2 L equations

$$
\left\langle\Psi_{B} \mid \Psi_{A}\right\rangle \propto\left|\begin{array}{cc}
\left\langle\frac{1}{Q_{\theta}^{+} Q_{\theta}^{-}} u^{k-1} Q_{B}^{2+} Q_{1}^{A}\right\rangle_{j} & \left\langle\frac{1}{Q_{\theta}^{+} Q_{\theta}^{-}} u^{k-1} Q_{B}^{2-} Q_{1}^{A}\right\rangle_{j} \\
\left\langle\frac{1}{Q_{\theta}^{+} Q_{\theta}^{-}} u^{k-1} Q_{B}^{3+} Q_{1}^{A}\right\rangle_{j} & \left.\begin{array}{c}
\left.\frac{1}{Q_{\theta}^{+} Q_{\theta}^{-}} u^{k-1} Q_{B}^{3-} Q_{1}^{A}\right\rangle_{j}
\end{array} \right\rvert\, \\
1 \leq j, k \leq L
\end{array}\right|
$$

SU(3) scalar product

Each bracket is a sum of residues at $u=\theta_{n} \pm i / 2$

$$
\begin{gathered}
N_{A}^{2} \delta_{A B}=\sum_{x, y} M_{x, y} \prod_{k=1}^{L} Q_{1}^{A}\left(X_{k, 1}\right) Q_{1}^{A}\left(X_{k, 2}\right) \prod_{k=1}^{L}\left[Q_{B}^{2}\left(Y_{k, 1}\right) Q_{B}^{3}\left(Y_{k, 2}\right)-Q_{B}^{2}\left(Y_{k, 2}\right) Q_{B}^{3}\left(Y_{k, 1}\right)\right] \\
\text { matches spectrum of } B(u)
\end{gathered}
$$

Can we build the basis where these are the wavefunctions?

Operator realization

$$
\begin{aligned}
\left\langle\Psi_{B} \mid \Psi_{A}\right\rangle=\int d^{L} \mathbf{x} & (\underbrace{\prod_{i=1}^{L} Q^{(A)}\left(x_{i}\right)}_{\text {state } A}) \underbrace{M(\mathbf{x})}_{\text {measure }}(\underbrace{\prod_{i=1}^{L} Q^{(B)}\left(x_{i}\right)}_{\text {state } B}) \\
\left\langle\boldsymbol{x} \mid \Psi_{A}\right\rangle & \left\langle\Psi_{B} \mid \boldsymbol{y}\right\rangle
\end{aligned}
$$

Instead of integrals we have sums

$$
\left\langle\Psi_{B} \mid \Psi_{A}\right\rangle=\sum_{x, y} M_{x, y}\left\langle\Psi_{B} \mid y\right\rangle\left\langle x \mid \Psi_{A}\right\rangle
$$

Get scalar product from two Sol bases $|y\rangle$ and $\langle x|$
$\langle x|$ are eigenstates of Sklyanin's operator $\quad B(u)=T_{13}(u) T_{12 \mid 13}(u-i)+T_{23}(u) T_{12 \mid 23}(u-i)$
$|y\rangle$ are eigenstates of new "dual" operator $C(u)=T_{13}\left(u-\frac{i}{2}\right) T_{12 \mid 13}\left(u-\frac{i}{2}\right)+T_{23}\left(u-\frac{i}{2}\right) T_{12 \mid 23}\left(u-\frac{i}{2}\right)$
$M_{x, y}=(\langle x \mid y\rangle)^{-1} \quad$ Measure matches what we got from Baxter!

$$
M_{x, y}=(\langle x \mid y\rangle)^{-1}
$$

$$
\left\langle\Psi_{B} \mid \Psi_{A}\right\rangle=\sum_{x, y} M_{x, y}\left\langle\Psi_{B} \mid y\right\rangle\left\langle x \mid \Psi_{A}\right\rangle
$$

For $\operatorname{SU}(2)$ this matrix is diagonal
For $\operatorname{SU}(3)$ it is not, but elements are still simple!
$\left\langle\Psi_{B} \mid \Psi_{A}\right\rangle \propto\left|\begin{array}{ll|l}\left\langle\frac{1}{Q_{\theta}^{+} Q_{\theta}^{-}} u^{k-1} Q_{1}^{A} Q_{B}^{2+}\right\rangle_{j} & \left\langle\frac{1}{Q_{\theta}^{+} Q_{\theta}^{-}} u^{k-1} Q_{1}^{A} Q_{B}^{2-}\right\rangle_{j} \\ \left\langle\frac{1}{Q_{\theta}^{+} Q_{\theta}^{-}} u^{k-1} Q_{1}^{A} Q_{B}^{3+}\right\rangle_{j} & \left\langle\frac{1}{Q_{\theta}^{+} Q_{\theta}^{-}} u^{k-1} Q_{1}^{A} Q_{B}^{3-}\right\rangle_{j}\end{array}\right| \begin{gathered}\text { [Cavaglia, Gromov, FLM 19] } \\ \text { [Gromov, FLM, Ryan, Volin 19] }\end{gathered}$

Alternative approach: [Maillet, Niccoli, Vignoli 20]
fix measure indirectly by deriving recursion relations for it
(+ another measure found in different basis)
Result should be same, would be interesting to prove

We also managed to compute measure for any $\operatorname{SU}(\mathrm{N})$ explicitly and for any spin [Gromov, FLM, Ryan 20]

Representation with weight [s, 0, ... 0],

 including infinite-dim case$$
\begin{array}{r}
M_{\mathrm{y}, \mathrm{x}}=\left.\sum_{k=\operatorname{perm}_{\alpha} n} \operatorname{sign}(\sigma)\left(\prod_{a=1}^{N-1} \frac{\Delta\left(\mathrm{x}_{\sigma^{-1}(a)}\right)}{\Delta\left(\left\{\theta_{a}\right\}\right)}\right) \prod_{a=1}^{N-1} \frac{r_{\alpha, n_{\alpha, a}}}{r_{\alpha, 0}}\right|_{\sigma_{\alpha, a}=k_{\alpha, a}-m_{\alpha, a}+a} \\
\varliminf_{\alpha, n}=-\frac{1}{2 \pi} \prod_{\beta=1}^{L}\left(n+1-i \theta_{\alpha}+i \theta_{\beta}\right)_{2 s-1}
\end{array}
$$

$\left\langle\Psi_{B} \mid \Psi_{A}\right\rangle \propto \left\lvert\, \begin{aligned} & \left.\left\langle\frac{1}{\left.\frac{Q_{\theta}^{+}}{Q_{\theta}^{-}} u^{k-1} Q_{1}^{A} Q_{B}^{2+}\right\rangle_{j}} \begin{array}{l}\left\langle\frac{1}{Q_{\theta}^{+} Q_{\theta}^{-}} u^{k-1} Q_{1}^{A} Q_{B}^{2-}\right\rangle_{j} \\ \left\langle\frac{1}{Q_{\theta}^{+} Q_{\theta}^{-}} u^{k-1} Q_{1}^{A} Q_{B}^{3+}\right\rangle_{j} \\ \left\langle\frac{1}{Q_{\theta}^{+} Q_{\theta}^{-}} u^{k-1} Q_{1}^{A} Q_{B}^{3-}\right\rangle_{j}\end{array}\right|| | c \right\rvert\, l\end{aligned}\right.$

$$
\left\langle\Psi_{A} \mid \Psi_{B}\right\rangle=\int d^{L} \mathbf{x}(\underbrace{\prod_{i=1}^{L} Q^{(A)}\left(x_{i}\right)}_{\text {state } A} \underbrace{M(\mathbf{x})}_{\text {measure }}(\underbrace{\prod_{i=1}^{L} Q^{(B)}\left(x_{i}\right)}_{\text {state } B})
$$

$$
\widehat{M}(x)=\operatorname{det}|\underbrace{\left(\frac{\hat{x}^{j-1}}{1+e^{2 \pi\left(\hat{x}-\theta_{i}\right)}}\right)}_{1 \leqslant i, j \leqslant L} \otimes \underbrace{\left(\begin{array}{cccc}
\mathcal{D}_{x}^{N-2} & \mathcal{D}_{x}^{N-4} & \ldots & \mathcal{D}_{x}^{2-N} \\
\vdots & \vdots & \ddots & \vdots \\
\mathcal{D}_{x}^{N-2} & \mathcal{D}_{x}^{N-4} & \ldots & \mathcal{D}_{x}^{2-N}
\end{array}\right)}_{(N-1) \times(N-1)}|
$$

similar to conjecture of [Smirnov Zeitlin]
based on semi-classics
and quantization of alg curve

Alternatively to build SoV basis we act on reference state with transfer matrices
$B(u)$ is diagonalized by
[Maillet, Niccoli 18] [Ryan, Volin 18]

$$
\langle x| \propto\langle 0| \prod_{k=1}^{L}\left[\hat{\tau}_{2}\left(\theta_{k}-i / 2\right)\right]^{m_{k, 1}+m_{k, 2}} \quad 0 \leq m_{k, 1} \leq m_{k, 2} \leq 1
$$

$C(u)$ is diagonalized by [Ryan, Volin 18] [Gromov FLM, Ryan, Volin 19]

$$
|y\rangle \propto \prod_{k=1}^{L} \hat{\tau}_{1}\left(\theta_{k}-i / 2\right)^{n_{k, 2}-n_{k, 1}} \hat{\tau}_{2}\left(\theta_{k}-i / 2\right)^{n_{k, 1}}|0\rangle \quad 0 \leq n_{k, 1} \leq n_{k, 2} \leq 1
$$

see also another approach [Derkachov, Valinevich 18]

Proof is direct generalization of highly nontrivial methods from [Ryan, Volin 18]

Based on commutation relations + identifying Gelfand-Tsetlin patterns

Correlators from SoV

Diagonal form factors of type $\quad \frac{\langle\Psi| \frac{\partial \hat{I}_{n}}{\partial p}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}=\frac{\partial I_{n}}{\partial p} \quad \begin{aligned} & \text { are computable, give ratios of } \\ & \text { determinants }\end{aligned}$

From self-adjoint property:

$$
0=\langle Q(\hat{O}+\delta O) \circ(Q+\delta Q)\rangle=\underbrace{\langle Q O \circ \delta Q\rangle}_{=0}+\langle Q \delta O \circ Q\rangle \quad \tau_{1}=2 \cos \phi u^{L}+\sum_{k=0}^{L-1} I_{k} u^{k}
$$

So $\quad \partial_{\phi} I_{k}=\frac{1}{2 \sin \phi} \frac{\operatorname{det}^{\substack{i, j=1, \ldots, L}} m_{i j}^{(k)}}{\operatorname{det}_{i, j=1, \ldots, L} m_{i j}}$

From $\partial / \partial \theta_{i}$ we get local operators on i-th site [Gromov, FLM, Ryan 20]

All this generalizes to $\operatorname{SU}(\mathrm{N})$

Can also compute many other correlators in det form
E.g. overlaps with different twists $\left\langle\Psi^{\bar{X}_{a}} \mid \Psi^{\lambda_{a}}\right\rangle=\llbracket \tilde{Q}_{12}, \tilde{Q}_{13} \mid Q_{1} \rrbracket \quad$ [Gromov, FLM, Ryan 20]

Also on-shell and off-shell overlaps involving B and C operators

$$
|\Psi\rangle_{\text {off shell }} \equiv \mathbf{b}\left(v_{1}\right) \ldots \mathbf{b}\left(v_{k}\right)|\Omega\rangle
$$

$\frac{\langle\Phi| \mathbf{c}_{\gamma_{1}}\left(v_{1}\right) \ldots \mathbf{c}_{\gamma_{K}}\left(v_{K}\right) \mathbf{b}_{\beta_{1}}\left(w_{1}\right) \ldots \mathbf{b}_{\beta_{J}}\left(w_{J}\right)|\Theta\rangle}{\langle\Phi \mid \Psi\rangle}$

Likely this gives a complete set of operators

Very recently - all matrix elements for simple complete set of operators in determinant form!

Key idea - SoV basis can be chosen to be twist-independent
$\begin{array}{ll}\text { Usual choice - } \\ \text { diagonal twist }\end{array} \quad g=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \quad \begin{aligned} & \mathrm{GL}(2) \text { covariance lets us choose any twist we } \\ & \text { like with the same eigenvalues }\end{aligned}$
Much more convenient $\quad G=\left(\begin{array}{cc}\chi_{1} & -\chi_{2} \\ 1 & 0\end{array}\right) \quad \begin{aligned} & \operatorname{tr} G=\chi_{1}=\lambda_{1}+\lambda_{2} \\ & \operatorname{det} G=\chi_{2}=\lambda_{1} \lambda_{2}\end{aligned}$

$$
t(u)=T_{12}(u)+\chi_{1} T_{11}(u)-\chi_{2} T_{21}(u)
$$

SoV bases independent of twist

Serve to factorise wave functions of different Hamiltonians

[Gromov, FLM, Ryan]

Principal operators [Gromov, Primi, Ryan 22]

$$
\begin{aligned}
& t(u)=T_{12}(u)+\chi_{1} T_{11}(u)-\chi_{2} T_{21}(u) \\
& t(u)=\chi_{1} u^{L}+\sum_{\beta=1}^{L} \hat{I}_{\beta} u^{\beta-1}
\end{aligned}
$$

Now integrals of motion admit character expansion $\quad \hat{I}_{\beta} \longrightarrow \hat{I}_{\beta}^{(0)}+\chi_{1} \hat{I}_{\beta}^{(1)}+\chi_{2} \hat{I}_{\beta}^{(2)}$

$$
t(u) \longrightarrow \mathrm{P}_{0}(u)+\chi_{1} \mathrm{P}_{1}(u)+\chi_{2} \mathrm{P}_{2}(u)
$$

$\mathrm{P}_{r}(u)$ - Principal operators \int [Gromov, Primi, Ryan]
Generate remaining
operator $T_{22}(u)$
Their form factors (including off-diagonal) have simple det form!

Expect lots of applications [in progress]

Non-compact spin chains

Infinite-dim highest weight representation of $\operatorname{SL}(\mathrm{N})$ on each site
Now we have integrals instead of sums

$$
\langle f\rangle_{j}=\int_{-\infty}^{\infty} d u \mu_{j} f \quad \mu_{j}=\frac{1}{1+e^{2 \pi\left(u-\theta_{j}\right)}}
$$

$\bar{O} \circ Q^{a}=0 \quad O \circ Q_{a}=0$

$$
\begin{aligned}
& \bar{O}=Q_{\theta}^{-} D^{-3}-\tau_{2} D^{-1}+\tau_{1} D-Q_{\theta}^{+} D^{+3} \\
& O=Q_{\theta}^{++} D^{+3}-\tau_{2}^{+} D+\tau_{1}^{-} D-Q_{\theta}^{--} D^{-3}
\end{aligned}
$$

We would like $\langle g \bar{O} \circ f\rangle=\langle f O \circ g\rangle$

Now when we shift the contour we cross poles of the measure

$$
\begin{array}{r}
\langle g \bar{O} \circ f\rangle=\int \mu g\left[Q_{\theta}^{-} f^{[-3]}-\tau_{2} f^{-}+\tau_{1} f^{+}-Q_{\theta}^{+} f^{[+3]}\right]=\begin{array}{c}
\langle f O \circ g\rangle+\text { pole contributions } \\
Q_{1}\left(\theta_{j}+\frac{i}{2}\right) \tau_{1}\left(\theta_{j}+\frac{i}{2}\right)-Q_{1}\left(\theta_{j}+\frac{3 i}{2}\right) Q_{\theta}\left(\theta_{j}+\frac{i}{2}\right)=0
\end{array}
\end{array}
$$

Poles cancel when $g=Q_{1}$! Then everything works as before

We also generalized to any spin s of the representation

$$
\langle f\rangle_{n}=\int_{-\infty}^{\infty} d u \mu_{n} f \quad \mu_{n}=\frac{1}{1+e^{2 \pi\left(u-\theta_{n}\right)}} \quad \square \mu_{n}=\frac{\Gamma\left(s-i\left(u-\theta_{n}\right)\right) \Gamma\left(s+i\left(u-\theta_{n}\right)\right)}{e^{\pi\left(u-\theta_{n}\right)}}
$$

For $\operatorname{SL}(2)$ we reproduce [Derkachov, Manashov, Korchemsky]
To build SoV basis we need more involved T's in non-rectangular reps see [Ryan, Volin 20]
$|y\rangle \propto \hat{T}_{\left\{m_{1}, m_{2}\right\}}\left(\theta_{n}+i s+i \frac{m_{1}-\mu_{1}^{\prime}}{2}\right)|0\rangle$
Integral = sum over infinite set of poles in lower half-plane

The measure we get from Baxters again matches the one from building the basis!

Comment on chronology:

Such tricks with Baxters were used in [Cavaglia, Gromov, FLM 18] for N=4 SYM

Then in [Cavaglia, Gromov, FLM 19] for SL(N) spin chain

And then in [Gromov, FLM, Ryan, Volin 19] for $\operatorname{SU}(\mathrm{N})$ spin chain

Extensions to field theory

Integrability in N=4 super Yang-Mills

single trace operators
$\operatorname{Tr}\left(\Phi_{1}(x) \Phi_{2}(x) \Phi_{2}(x) \Phi_{1}(x) \ldots\right)$

integrable spin chains

$\Psi \sim Q\left(x_{1}\right) Q\left(x_{2}\right) \ldots Q\left(x_{n}\right)$

Gives exact spectrum very efficiently! All-loop, numerical, perturbative, ...

Q-functions are known at any coupling from Quantum Spectral Curve

[^0]Hope to link with exact 3-pt functions which are much less understood

Goal: write correlators in terms of Q's
First all-loop example: 3 Wilson lines + scalars in ladders limit

$$
C_{123}=\frac{\left\langle Q_{1} Q_{2} Q_{3}\right\rangle}{\sqrt{\left\langle Q_{1}^{2}\right\rangle\left\langle Q_{2}^{2}\right\rangle\left\langle Q_{3}^{2}\right\rangle}}
$$

[Cavaglia, Gromov, FLM 18]

Similar structures seen in very different regime via localization [Komatsu, Giombi 18,19]

Extension to fishnet CFT

$$
S=\frac{N}{2} \int d^{4} x \operatorname{tr}\left(\partial^{\mu} \phi_{1}^{\dagger} \partial_{\mu} \phi_{1}+\partial^{\mu} \phi_{2}^{\dagger} \partial_{\mu} \phi_{2}+2 \xi^{2} \phi_{1}^{\dagger} \phi_{2}^{\dagger} \phi_{1} \phi_{2}\right)
$$

[Gurdogan, Kazakov 15] [Volodya's and Enrico's talks]
Baby version of $N=4 S Y M$, no inherits integrability

Integrability visible directly from Feynman graphs

We find very similar structures

$$
C_{\mathcal{O O L}} \propto \frac{d \Delta}{d \xi^{2}}=\frac{\int_{\mid} \frac{q \bar{q}}{u} \frac{d u}{2 \pi i}}{\int_{\mid} i\left(q^{+} \bar{q}^{-}-q^{-} \bar{q}^{+}\right) \frac{d u}{2 \pi i}}
$$

[Cavaglia, Gromov, FLM 21 + with Sever in progress]

Spin chain picture

Get $S O(4,2)$ spin chain in principal series rep

$$
\varphi_{\mathcal{O}}\left(x_{1}, \ldots, x_{J}\right)=\left\langle\mathcal{O}\left(x_{0}\right) \operatorname{tr}\left[\phi_{1}^{\dagger}\left(x_{1}\right) \ldots \phi_{J}^{\dagger}\left(x_{J}\right)\right]\right\rangle .
$$

[Gromov, Sever 19]

Spin chain form factors \qquad more involved correlators
Can compute them via SoV! [Cavaglia, Gromov, FLM 21]
E.g. $\partial I / \partial p$ gives $2 p t$ function with insertions to all loops

$$
\begin{align*}
\frac{\partial \hat{H}}{\partial h_{\alpha}} \hat{H}^{-1} & =-8\left[-\frac{x_{\alpha, \alpha-1}^{2}+x_{\alpha, \alpha+1}^{2}}{2}\left(1+x_{\alpha}^{\mu} \frac{\partial}{\partial x_{\alpha}^{\mu}}\right)+\left(x_{\alpha, \alpha-1}^{2} x_{\alpha+1}^{\mu}+x_{\alpha, \alpha+1}^{2} x_{\alpha-1}^{\mu}\right) \frac{\partial}{\partial x_{\alpha}^{\mu}}\right] \\
& \times \square_{\alpha}^{-1} \frac{1}{x_{\alpha, \alpha-1}^{2}} \frac{1}{x_{\alpha, \alpha+1}^{2}} . \tag{5.36}
\end{align*}
$$

Extensions in progress

Spin chain wavefunction $=$ CFT correlator

local action of \qquad diff operator

Proposal for g-function

Typical structure for g-function:

$$
g \equiv \sqrt{\frac{\langle B \mid \Psi\rangle\langle\Psi \mid B\rangle}{\langle\Psi \mid \Psi\rangle}}=\underbrace{\exp \left(\int_{0}^{\infty} \Theta(u) \log (1+Y(u)) d u\right)}_{\text {boundary-dependent, simple }} \times \underbrace{\sqrt{\frac{\operatorname{det}\left[1-\hat{G}_{-}\right]}{\operatorname{det}\left[1-\hat{G}_{+}\right]}}}_{\text {universal factor, hard }}
$$

Like for $\mathrm{GL}(\mathrm{N})$ spin chains we conjecture the scalar product in SoV
we will guess it from norm

$$
\left\langle\Psi_{A} \mid \Psi_{B}\right\rangle \propto \operatorname{det} M_{A B} \longleftarrow \begin{aligned}
& \text { built from integrals } \\
& \text { of } Q \text {-functions }
\end{aligned}
$$

For parity-symmetric states $\quad M_{A A}=\left(\begin{array}{cc}M_{+} & 0 \\ 0 & M_{-}\end{array}\right) \quad \Rightarrow \quad \operatorname{det} M=\operatorname{det} M_{+} \operatorname{det} M_{-}$
We propose universal part of g-function $\quad\left(g_{\text {universal }}\right)^{2} \propto \frac{\left|M_{-}\right|}{\left|M_{+}\right|_{*}} \quad \begin{aligned} & \text { nontrivially satisfies } \\ & \text { selection rules! }\end{aligned}$
inspired by spin chain/sin-Gordon results
[Gombor, Pozsgay 20, 21] [Caetano, Komatsu 20]

$\mathrm{N}=4 \mathrm{SYM}$

Still have the key starting point! [Cavaglia, Gromov, FLM 21]

$$
\left\langle\bar{Q}_{B}\left(\mathcal{O}_{A}-\mathcal{O}_{B}\right) Q_{A}\right\rangle_{\alpha}=0
$$

Main difference with spin chains/fishnets:
infinitely many degrees of freedom

Implies infinitely many integrals of motion

Transfer matrix is not polynomial anymore, need to find a good basis of loM's

Yangian symmetry for correlators

[Kazakov, FLM, Mishnyakov to appear]

Study conformal Feynman integrals arising in the most general fishnet CFT ('Loom CFT')

Start from 'Baxter lattice' (set of intersecting lines)

$$
\text { propagator }=\frac{1}{\left|x_{1}-x_{2}\right|^{\Delta}} \quad \Delta=D\left(2-\frac{\alpha}{\pi}\right)
$$

[Zamolodchikov]

These Feynman graphs should be integrable in any D

Feynman graphs with n external legs $\longleftrightarrow\left\langle\operatorname{Tr}\left[\Phi_{1}\left(x_{1}\right) \Phi_{2}\left(x_{2}\right) \ldots \Phi_{n}\left(x_{n}\right)\right]\right\rangle$
We find they are Yangian invariant!

$$
\left.\left.\left(L_{1} L_{2} \ldots L_{n}\right)_{\alpha \beta} \mid \text { graph }\right\rangle=\lambda(u) \delta_{\alpha \beta} \mid \text { graph }\right\rangle
$$

[Kazakov, FLM, Mishnyakov to appear]

Conformal Laxes act on external legs

$$
L\left(u_{+}, u_{-}\right)=\left(\begin{array}{cc}
u_{+}-\mathbf{p x} & \mathbf{p} \\
\mathbf{x}\left(u_{+}-u_{-}\right)-\mathrm{xpx} & \mathrm{xp}+u_{-}
\end{array}\right)
$$

[Chicherin, Derkachov, Isaev 12]

Generalization of [Chicherin, Kazakov, Loebbert, Muller, Zhong 17] [..]

- any $\Delta^{\prime} S$
- any graph geometry
- any (even) D

Feynman graphs with n external legs $\longleftrightarrow\left\langle\operatorname{Tr}\left[\Phi_{1}\left(x_{1}\right) \Phi_{2}\left(x_{2}\right) \ldots \Phi_{n}\left(x_{n}\right)\right]\right\rangle$
We find they are Yangian invariant !

$$
\left.\left.\left(L_{1} L_{2} \ldots L_{n}\right)_{\alpha \beta} \mid \text { graph }\right\rangle=\lambda(u) \delta_{\alpha \beta} \mid \text { graph }\right\rangle
$$

[Kazakov, FLM, Mishnyakov to appear]

Conformal Laxes act on external legs

$$
L\left(u_{+}, u_{-}\right)=\left(\begin{array}{cc}
u_{+}-\mathbf{p x} & \mathbf{p} \\
\mathbf{x}\left(u_{+}-u_{-}\right)-\mathbf{x p x} \times \mathbf{x}+u_{-}
\end{array}\right)
$$

[Chicherin, Derkachov, Isaev 12]

Generalization of [Chicherin, Kazakov, Loebbert, Muller, Zhong 17] [..]

- any $\Delta^{\prime} s$
- any graph geometry
- any (even) D

Key new idea - draw chain of Lax operators on dual faces

$$
L\left(u_{+}, u_{-}\right)=\left(\begin{array}{cc}
u_{+}-\mathbf{p x} & \mathbf{p} \\
\mathbf{x}\left(u_{+}-u_{-}\right)-\operatorname{xpx} & \operatorname{xp}+u_{-}
\end{array}\right)
$$

Read off parameters from local geometry

$$
L\left(u_{+}, u_{-}\right)=\left(\begin{array}{cc}
u_{+}-\mathbf{p x} & \mathbf{p} \\
\mathbf{x}\left(u_{+}-u_{-}\right)-\operatorname{xpx} \times \mathrm{xp}+u_{-}
\end{array}\right)
$$

Read off parameters from local geometry

Get new differential equations for these integrals! [Kazakov, FLM, Mishnyakov to appear]

Yangian invariance already led to powerful results for correlators/amplitudes
[Corcoran, Loebbert, Miczajka, Muller, Munkler, Staudacher ,... 18-22]
e.g. for 2d graphs linked with Calabi-Yau geometry
[Duhr, Klemm Loebbert, Nega, Porkert 22]

Hope to bootstrap new integrals

OUTLOOK

Finally we have SoV basis and measure for higher-rank spin chain Longstanding problem solved

- Expect many applications: super case [Gromov, FLM 18 ; Maillet, Niccoli, Vignoli 20], SO(N) [Ferrando, Frassek, Kazakov; Ekhamar, Shu, Volin 20]; long range [Ferrando, Lamers, FLM, Serban to appear] [Jules's talk] principal series rep for fishnet, Slavnov scalar products, TD limit, ...
- Algebraic meaning of $\int Q_{1} Q_{2} Q_{3}$?
- SoV for Gaudin models and conformal blocks [cf Volker's talk]
- AdS/CFT: other correlators, beyond ladders/fishnets, ... Many hints of hidden SoV structures! [Cavaglia, Gromov, FLM 18] [Giombi, Komatsu 18, 19] [Bercini, Homrich, Vieira 22]...

Thank you!

Matrix models and gravity

$$
Z\left(t, t^{*}\right)=\lambda^{-\frac{N^{2}}{2}} \int \mathcal{D} M e^{-\frac{N}{2 \lambda} \operatorname{Tr} M^{2}+\sum_{k=1}^{\infty} \frac{1}{k} \operatorname{Tr} B^{k} \operatorname{Tr}(M A)^{k}}
$$

Matrix model $=$ sum over graphs

Critical regime
2d gravity
$Z_{\text {disk }}$ matches gravity prediction! [Kazakov, FLM 21]

With these couplings we control curvature, how to get AdS / JT gravity?
[Witten '20] [Jackiw-Teitelboim]
[Mirzakhani]

Another problem: forests on random graphs [Gorsky, Kazakov, FLM, Mishnyakov 22]

$$
\sum_{\text {graphs } G} \lambda^{|G|} \operatorname{det}\left(L+m^{2}\right)=\sum_{F=\left(F_{1} \ldots F_{l}\right) \in G} \lambda^{|G|} m^{2 l} \prod_{i=1}^{l}\left|F_{i}\right|=Z_{\text {matrix model }}
$$

Gives massive fermions coupled to 2d gravity

Algebraic picture

Generating functional for transfer matrices in antisymmetric reps

$$
W=\left(1-\Lambda_{1}(u) D^{2}\right)\left(1-\Lambda_{2}(u) D^{2}\right) \ldots\left(1-\Lambda_{N}(u) D^{2}\right)=\sum_{k=1}^{N}(-1)^{k} \tau_{k}(u) D^{k}
$$

Define left and right action $\vec{D} f(u)=f(u+i / 2), \quad f \overleftarrow{D}=f(u-i / 2)$
Then $Q_{a} \overleftarrow{W}=0$ and $\vec{W} Q^{a}=0$

Using that for any operator $\oint g \vec{O} f=\oint f \overleftarrow{O} g \quad$ we get $\oint Q_{a}^{A}\left(\vec{W}_{A}-\vec{W}_{B}\right) Q_{B}^{b}=0$

The two Baxter equations are 'conjugate' to each other!

$$
\begin{aligned}
& \hat{O} \circ Q_{1} \equiv Q_{\theta}^{++} Q_{1}^{[+3]}-\tau_{1}^{+} Q_{1}^{+}+\tau_{2}^{-} Q_{1}^{-}-Q_{\theta}^{--} Q_{1}^{[-3]}=0 \\
& \hat{O} \circ Q_{\bar{a}} \equiv Q_{\theta}^{-} Q_{\bar{a}}^{[-3]}-\tau_{1} Q_{\bar{a}}^{-}+\tau_{2} Q_{\bar{a}}^{+}-Q_{\theta}^{+} Q_{\bar{a}}^{[+3]}=0
\end{aligned}
$$

Analog of self-adjointness property: $\left\langle Q_{1} \hat{\bar{O}} \circ f\right\rangle_{j}=0$

$$
\begin{array}{r}
\langle g f\rangle_{j} \equiv \int_{-\infty}^{\infty} \mu_{j}(x) g(x) f(x) \\
\mu_{j}(u)=\frac{1}{1+e^{2 \pi\left(u-\theta_{j}\right)}}
\end{array}
$$

$\langle g \hat{O} \circ f\rangle_{j}=\int_{-\infty}^{+\infty} \mu_{j}(u) g(u)\left[Q_{\theta}^{-} f^{[-3]}-\tau_{1} f^{-}+\tau_{2} f^{+}-Q_{\theta}^{+} f^{[+3]}\right] d u$
$=\int_{-\infty+i 0}^{+\infty+i 0} \mu_{j}\left(u+\frac{i}{2}\right)[\underbrace{Q_{\theta}^{++} g^{[+3]}-\tau_{1}^{+} g^{+}+\tau_{2}^{-} g^{-}-Q_{\theta}^{--} g^{[-3]}}_{\hat{O} \circ g}] f(u) d u$

+ residues from poles,

Poles cancel if $g \equiv Q_{1}$! Use nontrivial relations between T's and Q's

[^0]: [Marboe, Volin 14,16,17] [Alfimov, Gromov, Kazakov 14]
 [Gromov, FLM, Sizov 13,14] [Gromov, FLM, Sizov 15×2]
 [Gromov, FLM 15, 16]
 [FLM, Preti 20] ...

