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Motivation



N=4 super Yang-Mills / strings on AdS5 x S5
is an integrable theory

For complete solution of N=4 SYM we need:

_ 1
1) Exqc’r;ec’rrum <O(£C)O(y)> = m O(z) = Tr(d1PrP3...) (2)
Well understood
2) Exact 3pt functions <01($1)OQ(1}2)03 (583)) = |:c1—:c2A1+A2_A3|w1—w3%fiA3_A2|:E2—:1:3|A2+A3_A1

/

Key open problem !



Solution for specirum

integrable spin chains

single trace operators
Weak coupling: ° i ——
Tr(®q ()P (x)Po(x)Py1(x)...)

Finite coupling: Quantum Spectral Curve  [Gromoy, Kazakoy, Leurent, Volin 13]

Difference equations on Baxter functions Q(u) + analytic requirements

&AQDLD—'————?@AQ%B QL Quwd ~



Quantum Spectral Curve

Huge set of results for spectrum
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Spectrum is known

What about 3pt functions 222



Idea: use separation of variables (SoV) [Sklyanin]

We expect that in any integrable system wavefunctions factorise in a good basis

(37\‘11> ~ Q(£U1)Q(CC2) .o Q(ZCN) Like Whydrogen = F1(r)F2(0)F;3(¢)

Q’s should be given by Quantum Spectral Curve at any coupling!

X2
db(@
Very promising results for (Q10203)
correlators already 123 = V(@2 (Q2)(Q2)
[Cavaglia, Gromoyv, FLM 18]
c+ico du
See also [Giombi, Komatsu [18-20] ()= L_m 2iu fw, >0

+ very recent results [Basso, Georgoudis, Sueiro 22] [Bercini, Homrich, Vieira 22]
linking with hexagon expansion [Basso, Komatsu, Vieira 15]



SoV should be very powerful

Yet almost undeveloped beyond GL(2) until recently (for SYM we need PSU(2,2 | 4))
Also important for spin chains/cond-mat, [Derkachov, Frahm, Kitanine,
seminal results for GL(Q) models Korchemsky, Kozlowski, Maillet, Niccoli,

Terras, Teschner, Smirnoy, ...]

Need to understand and develop SoV



PLEASE KEEP
2 METRES APART

Jat it




Focus of this talk: SoV for GL(N) spin chains

Frim(r, 6, 9) =R(r)P(O)F(¢)

(Tnfm I Tn’!’m’) = ‘-drdfﬁd(—) ?'2 Sin2 9 “P:mlanrmrp = 5nnr5mmr5w
hydrogen atom / \.
Dual wave Wave function

Measure .
function

Two main questions: We will answer both

1) How to factorise wavefunctions?
2) What is the measure?

[review: FLM to appear, invited review for J Phys A]



Plan

e Construction of SoV basis
* Finding the measure

* Extensions to field theory and Yangian symmetry



The SoV basis



SU(N) spin chains

Full Hilbert space for [, sites is (CN &) CN X - X CN

.

¥

L
H=> (1-—P,n+1) L times
n=1

(+ boundary terms, i.e. twist)

Monodromy matrix:

T(u):Ral(u—ﬂl)...RaL(u—HL)g a

Riz(u) = (u — §) +1iPi
We take generic inhomogeneities 6,, and diagonal twist g = diag(Aq, ..., AN)

L
Transfer matrix  1rq T(U) = Z Thu™ gives commuting integrals of motion
n=0




Wavefunctions for spin chains — SU(2)

Tlu) = (O(m f;(u)) TS 0

(W) = B(u1)B(uz) ... B(um)|0) t1

i IIl

Bethe roots

bW =0+ 1/2 g s — g
Fixed by [] Z—+ =% [ T——

w — 0, —i/2 o —
LU 0, — i/ i Wi Uk —

Or by Baxter equation Q&Q]LjL + Qj@f_ — 71101 =0

Impose 71, @1 are polynomials — fix both

We wish to diagonalize

T1(u) = tr T(u) = A(u) + D(u)

M
Q1 = e"? H(U — Uug)
k=1

Q9 — H(ufgn)

n=1

fi_ = flu+1i/2)



L
Consider (7| = eigenstates of operator B(u)

k=1

(u — xk)

[Sklyanin 90-92]

r“.
Q, = e”" H(u — ;)

N
j=1

Then wavefunctions factorize! (:E‘\If> = H Ql(ib‘k)

L

L M
Proof: (x1...x.|¥) =[] I] (u; —xx) = [] Q1(xx)

k=1j=1 k=1

k

xp=0p+i/2, k=1,...L gives 2L states, i.e. basis of the space — called SoV basis

In practice we need a slight modification 7 — 784 = KTK~! p _, peood

retains all nice properties

[Gromoyv, FLM, Sizov 16] [Belliard, Slavnov 18] [Sklyanin 90]



SU(3) case

Sklyanin’s proposal  B(u) = T13(u)Ti2)13(w — @) + Toz(u)Ti)23(u — i)  [Sklyanin 92]

T & (u) T & (U—I—Z)
T,1 o ke oo u) = J1R1 J1Rk2 ‘
stk 00 = | ) T+ )

are the quantum minors

Like for SU(2) it creates states! ‘\If> — pgood (ul) ... Beood (UM) ‘O)
[Gromoyv, FLM, Sizov 16]

No nesting, surprisingly much simpler than usual BA
T) = Y FU2OTy, (ug)Thag(u2) .. Tiay (unr)|0)

a;=2.3 T
Kulish, Reshetikhin 83

wavefunction
of auxiliary SU(2) chain

Factorisation of states follows (x|¥) =[] Q1(xx) Q1 =" [ [(u—1u)
k j=1

All this extends to SU(N)

T — T = KTK ™!

B — B#°d

L ) M R )
Huj—!?n—I-z‘fQ _ /\QHuJ—uk-Q—-aHu)—vk—z‘fQ
wi— 0 —i/2 X uj—up — 1 uj— v +1i/2 7
J n / 1&-;&J 7 k P kT

n=1

M . R .
H v — up +i/2 _ EH vj— v+
LV~ U — /2 Ao oy vj— v — i



SU(N) case

B-operator is built from quantum minors B(u) = 'Z TN (u) TN (w — 0)... Tha. py (u — (N — 2)i)

Inspired by classical SoV
[Smirnov 2000] [Chervov, Falqui, Talalaev 07] [Gromoyv, FLM, Sizov 16]

Creates states as | I) = B&o°d(y) ... Beood(y,)|0)  For any SUN)!
[Gromov, FLM, Sizov 16]

B(u) = H(u — Tk) (x|T) = H Q1(xr) We also found spectrum of x’s

States construction proven by [Liashyk, Slavnov 18] for SU(3) (heroic effort)
Then full proof for SU(N) [Ryan, Volin 18], who also showed equivalence with another way to build (x|

(x| ~ (0|T(0; +13/2)™ ... T (0, +i/2)"*
[Maillet, Niccoli 18,19,20]

Analog of states construction found for super SU(1|2) [Gromov, FLM 17]



Computing the SoV measure



For scalar products we need measure

In GL(2)-type models:

L
(Wp|Wa) = J [ [@W(z) | M(x)

1 '

[:
Ny = measure
Y )

(

\

L
Q(b)
L]

~"

state B

i

Higher rank GL(N) models are complicated

e.g. for s=-12 spin chain

1—[ (627r:cj o €2ka)($j o xk)

i<k
1_[(1 + 6271'($j—9k))
7,k
[Sklyanin 90-92]
[Derkachov Korchemsky Manashov 02]

M(x) =

Measure was not known at all, except in classical limit [Smirnov Zeitlin 02]



To compute correlators 1
one inserts the complete basis %; < ) ( ‘

measure My = ((z|z)) ™1

Overlaps between these states look complicated

Can we find a way around this?



SU(2) spin chain

|dea: orthogonality of states must imply same for Qs

Baxter equation can be written as

A A 1 1 _ 1
Qy op o Qg

Key property: self-adjointness

(fOg) = (gO ) (f) = f du ()

fF=fluti/2)
Df(u) = f(u-+1i/2)
Qo =] J(w—6n)

n



We can introduce L such brackets (f); = fdu i f Hj = eI i=1,...,L

L
T = 2 COS¢ UL 4 E :Ikuk_l uniquely identifies
P the state

A 1 1 T
O=—D+_—D2_

o @ @
This gives orthogonality!

L _
(QB(O"A - OB)QA>j —0 5 Z(II? B I/?) <Uk 1+QAQB> _ 0 Nontrivial solution
Qg @y j means det=0

Sum of residues at ©w = 0,, £ /2
.— i.e.at x eigenvalues as expected

uk—lQAQB
det < > & 0AB Scalar product in SoV

[Sklyanin; Kitanine, Maillet, Niccoli, ...]

Matches known results [Kazama, Komatsu, Nishimura, Serban, Jiang, ...]




SU(3) spin chain

Now we have 2 types of Bethe roots

b wj— 0, + /2 MU — ug i w— v — )2
H Ui~ n TY2 _ cildr—¢2) 1—[ Uj — Ui 'H uj — v —1/2 momentum-carrying {uj} -
e On — /2 kot Uj — Uk — 1 7 Uj — U + /2 i
N, Vi — Vg + i N, g — s — D N
1 — (”‘((")2—("‘)3) 4, ’ J //,f ofe { -} v
1_[ l‘.j — g — 2 l—I ('.I' — U + 1/2 dUXIIIqry UJ 321

k+#j =1

6(¢1+¢3)u H(u _ ’Uj)

J

N,
(le 2
1_[ (u —uy ) @,

Main new feature: should use Q'L in addition to (J; to get simple measure

Other Qs give dual roots



Baxter equations: Ta(1) = uPxa(G) + Z w I, 0,
j=1
O——p3__D2 _piy T p_ L p
TQ Qe T@e @
0 0 %0 0 %o 0
O _ LD—I—:)) . T2—|_ D T Tl_ D—l . 1 D—3
i QT Qo QuQ, Q;
OoQ*=0 Oo0Q,=0

These two operators are conjugatel (fO © 9>j — (QO © f>3

(Qy' (0% = 0%)@4); =0



L
Ta(u) = ?LLXU,(G) + Z T Io.5-1,
J=1

Linear system:

kB Na,A[— o
> (Iﬁ,k—fik)(—n‘l(“ Qron > 0

_|_ —
a={1,2}, k=1,...,L Qp Wy J

We have 2L variables, and two choices of a give 2L equations



[Cavaglia, Gromoy, FLM 19]
[Gromov, FLM, Ryan, Volin 19]

k—1,2+ A
-- HQ ) (are; )
(Up|Pa) ox ke M L k13— A SU(3) scalar product
aa; Qp @1 > QrQ; ¢ Qp @1 >j
1< i k<L

Each bracket is a sum of residues at v =0, +i/2

NA5AB—ZMmyHQ1 Xi1)Q1 (X 2)

\

L
H ()p (Y1) Q; (Yk:Q)—() (YkZ)O”(Ykl)]

matches spectrum of B(u)

Can we build the basis where these are the wavefunctions?



Operator realization [Gromoyv, FLM, Ryan, Volin 19]

( L | |

L L
(P |¥ )=J(1Lx QW (z;) | M(x) QB (z;)
o Ll ol (U] Wa) = 32 Moy (9 sl /¥ a)

N el il ses s’
@) (Vply)

Instead of integrals we have sums

Get scalar product from two SoV bases |y> and <ZC‘
<ZC‘ are eigenstates of Sklyanin’s operator  B(u) = Ti3(u)Tigj13(w — @) + Tog(u)Ti2je3(u — 0)

|y) are eigenstates of new “dual” operator C(u) = Tis(u — 2)T12p13(u — %) + Tos(u — 2)Thgp3(u — %)

ijy — (<£U |y>)_ 1 Measure matches what we got from Baxter!



My = ({z]y))~1 (Up|W4) = 3 M, (Uply) x|V )

LY

For SU(2) this matrix is diagonal

For SU(3) it is not, but elements are still simple!

- <Q;“1Q9_ uk—lQtié?e--% <Q;1Q9:uk_1Q14Qé_>j [Cavaglia, Gromov, FLM 19]
Up|Wa)

1 k—1 A3+ 1 kE—1 A N3—
QJQQU Q15 >j <QjQQ_u Q15 >J' [Gromoy, FLM, Ryan, Volin 19]

Alternative approach: [Maillet, Niccoli, Vignoli 20]

fix measure indirectly by deriving recursion relations for it
(+ another measure found in different basis)

Result should be same, would be interesting to prove



We also managed to compute measure for any SU(N)

1000 2000 3000 3616
explicitly and for any spin  [Gromoy, FLM, Ryan 20] T ik
1000 ~ 1000
Representation with weight [s, O, ... 0],
including infinite-dim case
2000+ - 2000

. p —\ _]fa" P Fang q 3000 {3000
Myx = Z H A(] ]_[ T

Fe,0 |
Fc—permﬂn a=1 Oa,a=ka,a—mMa,ata
3616 1, , , , 1 3616
\ 1 1000 2000 3000 3616
1 L
Tan = _E l_[l n+1—1if, + 1.6_3_123 1

1 k—1nA 2+ 1 k 1HA
N Ty
<\[’F}|\I/A> X <Q3—Q9 “ Ql °B I Qe Qe Q ( >

L_ k=140 " L k14
Q;Q;u 15 ) ()

QQ7



[Cavaglia, Gromov, FLM 19]

M (x)
—— | i3]

J) measure

<q:Ay\pB>=Jde

state-independent operator,
contains shifts

i DN-2 pN-4  D2-N
- — p ; ; _ . similar to conjecture of [Smirnov Zeitlin]
M(X) = det \.(1 + 2" Hﬁj)J D_.--,:r 5 I]_.n;r 1 . ,DEI N based on semi-classics
1<ij<I . 7 and quantization of alg curve
(N —1) = (N —1)




Alternatively to build SoV basis we act on reference state with transfer matrices

B(U) is diqgonqlized by [Maillet, Niccoli 18] [Ryan, Volin 18]

L
(al o (O] T (7285 — i/2))™ ™2 0< mpy <y <1
k=1

C(U) is C“CIgOI‘lCI“ZGCI b)’ [Ryan, Volin 18] [Gromov FLM, Ryan, Volin 19]

L
ly) oc | [ #1005k — i/2)"27 "1 25(6), — i/2)"1|0) 0 <npa1 <nga <1
k=1
see also another approach
[Derkachov, Valinevich 18]

Proof is direct generalization of

highly nontrivial methods from [Ryan, Volin 18]

Based on commutation relations +

identifying Gelfand-Tsetlin patterns R,

u+kh




Correlators from SoV



oy
<\D‘%|\I}> _ % are computable, give ratios of
<\Ij|\1}> Op determinants

Diagonal form factors of type

From self-adjoint property:

L—1
0 =(Q(0 +00) 0 (Q+6Q)) = (QO 0 dQ) + (Q50 0 Q) m =2cos¢ul + > L'
k=0
=7  Link§I, with 66
(k)
det m..
o7 I 4ij=1,..L Y
So (gl = Ssind  det 1. From 0/00; we get local operators
| EI:JI:L---?L J \ on i-th site [Gromov, FLM, Ryan 20]

All this generalizes to SU(N)



Can also compute many other correlators in det form

E.g. overlaps with different twists (P[P, [[Qm,@m Ql]] [Gromov, FLM, Ryan 20]

Also on-shell and off-shell overlaps o o
. . Woff shell = bP(v1) ... bvg)|€2)
involving B and C operators

(DiCqy, (1) ... Cye (v )bg (wr) ... bg;(wy) ©)
‘DD

Likely this gives a complete set of operators



Very recently — all matrix elements for simple complete
[Gromov, Primi, Ryan 22]

set of operators in determinant form!

Key idea — SoV basis can be chosen to be twist-independent

. A O GL(2) covariance lets us choose any twist we
Usual choice — g =

0 Ao

) . like with the same eigenvalues
diagonal twist

Much more convenient

G—(Xl —Xz) trG =x1= A1+ A
1 0 detGZXQ - Al)\z

t(u) = Ti2(u) + x1T11(u) — x2T21(u)

SoV bases independent of twist Serve to factorise wave functions of different Hamiltonians

Ryan, Voli
[Ryan, Volin] [Gromoy, FLM, Ryan]



Principql Operc”‘o rs [Gromoy, Primi, Ryan 22]

t(u) = Tho(u) + x1T11(u) — x2T21 ()

L
t(u) = x1ul + Z TguP~!
B=1

A

Ig — féo) -|-X1fél) -I-Xzféz)

Now integrals of motion admit character expansion

t(u) — Po(u) + x1P1(u) + x2P2(u)

[ PT(’U,) - Principal operators ] [Gromov, Primi, Ryan] Generate remaining
" operator Too(u)

Their form factors (including off-diagonal) have simple det form!

Expect lots of applications [in progress]



Non-compact spin chains



. . . . . . . [Cavaglia, Gromov, FLM 19]
Infinite-dim highest weight representation of SL(N) on each site

oo

Now we have integrals instead of sums (f); = / du u; f " 1

T 1 1 e2n(u—0;)

— OO
O=Q,D° 71D ' +7D—-QsD"
O=Q D™ -7 D+ D-Q, D*
We would like (gO o f) = (fO o g)

Now when we shift the contour we cross poles of the measure

(900 f) = / w9 |Qp fH = maf ™+ muft — Qf fH| = (fOog) + pole contributions

Qi85 + 5T (85 + %) — Q1(8; + F)Qo(6; + 5) =0
Poles cancel when g = Q1! Then everything works as before



We also generalized to any spin s of the representation [Gromov FLM, Ryan 20]

O

(fin = f du fin f [, ! = i = ['(s —i(u—6,)T(s +i(u—6,))

— 1 _l_ezw(u—Qn) o (u—0,)

— 0

For SL(2) we reproduce [Derkachov, Manashov, Korchemsky]

To build SoV basis we need more involved T’s in non-rectangular reps see [Ryan, Volin 20]

- . omy —
1Y) X Ty mo} (9n+zs+z 12 Ml) 10)

Integral = sum over infinite set of poles in lower half-plane

-

The measure we get from Baxters again matches

the one from building the basis!



Comment on chronoloqgy:

Such tricks with Baxters were used in [Cavaglia, Gromov, FLM 18] for N=4 SYM
Then in [Cavaglia, Gromov, FLM 19] for SL(N) spin chain

And then in [Gromoyv, FLM, Ryan, Volin 19] for SU(N) spin chain



Extensions to field theory



Integrability in N=4 super Yang-Mills

integrable spin chains

single trace operators

Tr(P1(z)Po(x)Po(x)P1(x) .. .) ——

-functi k t li
\:[j ™~ Q (a,:]_ ) Q (332) t e Q (:’U?’L) Q-functions are known at any coupling [Gromoy, Kazakov, Leurent, Volin 13]

from Quantum Spectral Curve

[Marboe, Volin 14,16,17] [Alfimov, Gromoyv, Kazakov 14]

[Gromoyv, FLM 15, 16]

All-loop, numerical, perturbative, ... [FLM, Preti 20]

Hope to link with exact 3-pt functions
which are much less understood



Goal: write correlators in terms of Q’s

First all-loop example:

Clion — (Q1Q2Q3)
125 = Q2@ Q?)

[Cavaglia, Gromoy, FLM 18]

3 Wilson lines + scalars
in ladders limit

Similar structures seen in very different regime via localization
[Komatsu, Giombi 18,19]



Extension to fishnet CFT

N
s == [d'atr (0"6}0u1 + 0" obouds + 262 ¢ dhe1 o)

[Gurdogan, Kazakov 15] [Volodya’s and Enrico’s talks]
Baby version of N=4 SYM, no inherits integrability

\ 4

Integrability visible
directly from Feynman graphs

A\ 4

A\ 4

qq9 du
We find very similar C dA | u 2mi [Cavaglia, Gromoy, FLM 21
structures oor X o

, _ — + with Sever in progress]
g [ilgtq —q qt) §

271



Spin chain picture

Spin chain wavefunction = CFT correlator

Get SO(4,2) spin chain in principal series rep

co(zr.....xg) = (O(xg) tr [@)(x1) ... 25 (z1)]) .

[Gromoyv, Sever 19] 9

Spin chain form factors ——— more involved correlators

Can compute them via SoV! [Cavaglia, Gromov, FLM 21]

E.g. 0 I/0p gives 2pt function with insertions to all loops

OH - 1 ;62_. 1 T '.L'Q.. 11 7] 9 2 0
Bh.a.H = -8 l——cm 5 aa 1 —|—;¢:§—a£§ + (.UQ._..:\—H:EH + Ia.a+i-5g—1)—a£§

1 1

(5.36)

Extensions in progress

local action of _—"

diff operator



Proposal for g-function [Cavaglia, Gromov, FLM 21]

: Bl (B ¢ oo det [1 — t_’;’_]
Typical structure g= {II* | q;f :lf B) = exp (/ O(u)log(l+ }’l{n]]fir:) % .
for g-function: V (¥w) 1 \\ det [1 — G’_]

boundary-dependent, simple > 4

universal factor, hard

~

Like for GL(N) spin chains we conjecture the scalar product in SoV \ we will guess it
from norm

<‘PA|\PB> ox det Map Ss—___ built from integrals

of Q-functions

My 0

For parity-symmetric states M4 = ( 0 M

) = det M =det M det M_

[M_|  nontrivially satisfies

We propose universal part of g-function (yuniverﬁaﬂ? ¢ — _
M|, selection rules!

inspired by spin chain/sin-Gordon results
[Gombor, Pozsgay 20, 21] [Caetano, Komatsu 20]



N=4 SYM

Still have the key starting point! [Cavaglia, Gromov, FLM 21]

[(QB(OA - 0B)QAa)a =0 ]

Main difference with spin chains/fishnets:
infinitely many degrees of freedom

Implies infinitely many integrals of motion

Transfer matrix is not polynomial anymore, need to find a good basis of loM’s



Yangian symmetry for correlators

[Kazakov, FLM, Mishnyakov
to appear]



Study conformal Feynman integrals

arising in the most general fishnet CFT (‘Loom CFT’)  [Kazakov, Olivucci 22]  [Kazakov's talk]

Start from ‘Baxter lattice’ (set of intersecting lines)

1
|1 —.’If~3|£"

propagator = A=0D (2 — E)

[}

[Zamolodchikov]

These Feynman graphs should be
integrable in any D



Feynman graphs with n external legs <—— (TI’ [P1(x1)Pr(zo) ... Cbn(xn)])

We find they are Yangian invariant !

(L1Lo...Ln)g |9raph)y = A(u)d,g|graph)

[Kazakov, FLM, Mishnyakov to appear]

Conformal Laxes act on external legs

L ) Uy — px P
Uy, U_) =
- X(Uy —u_) — XpX Xp + u_

[Chicherin, Derkachoy, Isaev 12]

Generalization of [Chicherin, Kazakov, Loebbert, Muller, Zhong 17] [..]
e any A's

* any graph geometry

* any (even)D



Feynman graphs with n external legs <—— (TI’ [P1(x1)Pr(zo) ... Cbn(xn)])

We find they are Yangian invariant !

(L1Lo...Ln)g |9raph)y = A(u)d,g|graph)

[Kazakov, FLM, Mishnyakov to appear]

Conformal Laxes act on external legs

L ) Uy — px P
Uy, U_) =
- X(Uy —u_) — XpX Xp + u_

[Chicherin, Derkachoy, Isaev 12]

Generalization of [Chicherin, Kazakov, Loebbert, Muller, Zhong 17] [..]
e any A's

* any graph geometry
* any (even)D

Key new idea — draw chain of Lax operators on dual faces



L(ugy,u_) = ( P P )

x(uy —u_) — XpX Xp + u_

Read off parameters from local geometry

Q

[+a;,, +m]




UL —Uu_) — XPX XP + u_

k ;
L(?_L_i_’ ?1_) _ ( ( U+ o pX p ) Q *[do“*.‘_iga&*T)'fd;‘ﬁF‘;%/di‘W)
X

°(%7‘ \

Read off parameters from local geometry ()

01‘m

olK
N /

Get new differential equations for these integrals! ._ N ; .
[Kazakov, FLM, Mishnyakov to appear] \/ ‘

Yangian invariance already led to [Corcoran, Loebbert, Miczaika,

powerful results for correlators/amplitudes Muller, Munkler, Staudacher ... 18-22]

e.g. for 2d gl‘dphS linked [Duhr, Klemm Loebbert,

Relations with SoV to be explored
P with Calabi-Yau geometry  Nega, Porkert 22]

Hope to bootstrap new integrals

~—— »



OUTLOOK

Finally we have SoV basis and measure for higher-rank spin chain
Longstanding problem solved

* Expect many applications: super case [Gromov, FLM 18 ; Maillet, Niccoli, Vignoli 20],
SO(N) [Ferrando, Frassek, Kazakov; Ekhamar, Shu, Volin 20];
Iong range [Ferrando, Lamers, FLM, Serban to appear] [Jules’s talk]
principal series rep for fishnet, Slavnov scalar products, TD limit, ...

* Algebraic meaning of/Q1Q2Q3 2

* SoV for Gaudin models and conformal blocks [cf Volker’s talk]

* AdS/CFT: other correlators, beyond ladders/fishnets, ...
Many hints of hidden SoV structures! [Cavaglia, Gromov, FLM 18] [Giombi, Komatsu 18, 19]

[Bercini, Homrich, Vieira 22]...



Thank you!






Matrix models and gravity

N2 — N Trar? == 1 k T AV
Z(t,t*) =TT f DM e~ 2xTtM? + > 7§ TeB* Tr(MA)
vertex — t‘l’l [Kazakov, Staudacher, Wynter 96]

face - t,,” Matrix model = sum over graphs

Z ., matches gravity prediction! [Kazakov, FLM 21]

[Witten ‘20] [Jackiw-Teitelboim]
[Mirzakhani]

With these couplings we control curvature, how to get AdS / JT gravity?

Another problem: forests on random graphs [Gorsky, Kazakov, FLM, Mishnyakov 22]

[
G 2\ G 21 L
2 : A‘ | det(L +m ) _ E : )\l lm H |F’z.| — Zmatrix model
graphs G F=(F,..F))eG i=1
Generalisation of
Gives massive fermions coupled to 2d gravity [Bondesan, Caracciolo, Saleur, Sportiello, ... 04, 09, 16]

Hope to better understand holography in 2d /1d /0d



Algebraic picture

Generating functional for transfer matrices in antisymmetric reps

W = (1 - Ai(u)D?)(1 — As(w)D?)... (1 = Ax(w)D?) = 3 (=1)F 7, (u) DF
k=1

Define left and right action ﬁf(u) = f(u+1/2), fD = flu—1i/2)

Then QGW =0 and WQ“ =0

Using that for any operator fg@f = jgfﬁg we get f@f(WA — WB)Q% =0



The two Baxter equations are ‘conjugate’ to each other! [Cavaglia, Gromoy, FLM 19]

0Q1=Q QM — O + 5@ —Q, QT =0
0Qa=Q,Q Y — 1Q; + Q7 — QM =0

Qr O

Analog of self-adjointness property: Ql ()c f ;= ()

A +00
(900 = [ e [Q = - nf~ +nf* - Qf 7+ du

+o0o0+120 ‘

B / pi(u+%) | Qs g™ — gt +g” — Qg f(w) du
—DO—'—ZU‘ ™ ' d

! Oog ]

+ residues from poles ,

Poles cancel if g = (J1 | Use nontrivial relations between T's and Q’s



