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The problem

Hamiltonian derived from integrable staggered 6VM, see Sascha Gehrmann’s talk, essence:

H =
2L
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[

−1

2
~σ j~σ j+2 + sin2 γσz

jσ
z
j+1 −

i

2

(

σz
j−1 −σz

j+2

)(

σx
jσ

x
j+1 +σ

y
jσ

y
j+1

)]

Jacobsen, Saleur 2006, Ikhlef, Jacobsen, Saleur 2008+12 (non-compact continuum limit, log-corrections)

Frahm, Martins 2011+12 (density functions, numerical solns.)

Candu, Ikhlef 2013, Frahm, Seel 2013 (non-linear integral eqs.)

Conformal spectrum

E(L) = Le0 +
2π

L
vF

(

−1

6
+

γ

2π
m2 +

π

2γ
w2 +

2γ

π−2γ
s2 + integers

)

, vF = sin(2γ)
π

π−2γ

with “usual” integers m (magnetization), w (momentum) and “continuously” growing s for

reallocating n BA-roots from one line to the other (see later).

s ≃ πn

2logL
large L, n = 0,1,2, ... (Wiener-Hopf technique by IJS 12)

Phantastically accurate quantization condition for s valid even for quite finite systems by Bazhanov,

Kotousov, Koval, Lukyanov 2019, 20, 21, ⇒ SL(2,R)/U(1) NLSM on Euclidean → Lorentzian black hole.
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Bethe ansatz equations / T Q relations

Λ(z) = Φ(z− iγ)
q(z+2iγ)

q(z)
+Φ(z+ iγ)

q(z−2iγ)

q(z)

Φ(z) = sinhL z, q(z) = ∏
j

sinh 1
2 (z− z j)

Parameterization with 2πi-periodicity, 2 independent analyticity regions:

Bethe ansatz – p.4/24



The “auxiliary functions” ... destined to satisfy integral equations

Function related to counting function

a(z) :=
Φ(z+ iγ)q(z−2iγ)

Φ(z− iγ)q(z+2iγ)
, BA eqns a(z j) =−1

We use this function off the distribution lines like in

AK, Batchelor 90; AK, Batchelor, Pearce 91; AK 92; Destri, de Vega 92, 95; J. Suzuki 98

“It is convenient to consider”:

a1(x) :=
1

a(x+ iγ)
=

Φ(x)

Φ(x+2iγ)

q(x+3iγ)

q(x− iγ)

a2(x) := a(x+ iπ− iγ) =
Φ(x)

Φ(x−2iγ)

q(x+ iπ−3iγ)

q(x+ iπ+ iγ)

a3(x) := a(x− iγ) =
Φ(x)

Φ(x−2iγ)

q(x−3iγ)

q(x+ iγ)

a4(x) :=
1

a(x+ iγ)
=

Φ(x)

Φ(x+2iγ)

q(x+ iπ+3iγ)

q(x+ iπ− iγ)

with x on or close to the real axis. TBA-correspondence: ai ≡ eεi/T ,
εi

T = ei

T +K∗ log
(

1+ eεi/T
)
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The associated “auxiliary functions”

The analogues of the 1+ eεi/T functions and their factorizations

A1(x) := 1+a1(x) =
1

Φ(x+2iγ)

q(x+ iγ)

q(x− iγ)
Λ(x+ iγ)

A2(x) := 1+a2(x) =
1

Φ(x−2iγ)

q(x+ iπ− iγ)

q(x+ iπ+ iγ)
Λ(x+ iπ− iγ)

A3(x) := 1+a3(x) =
1

Φ(x−2iγ)

q(x− iγ)

q(x+ iγ)
Λ(x− iγ)

A4(x) := 1+a4(x) =
1

Φ(x+2iγ)

q(x+ iπ+ iγ)

q(x+ iπ− iγ)
Λ(x+ iπ+ iγ)
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Analyzing multiplicative functional equations by Fourier transform

What do we do with this? Definitions/equations like

f (x) = g(x+ iα)/h(x+ iβ)

after log-derivative and Fourier transform turn into

FT
[
(log f )′

]

k
= e−αk FT

[
(logg)′

]

k
+ e−βk FT

[
(logh)′

]

k

Observation: We have 4 such equations “Ai(x) = ...” where q and Λ have two regions of

analyticity in the complex plane. Therefore we have 2 different Fourier transforms for each.

The 4 linear equations for the 2+2 Fourier transforms of logq and logΛ can be solved uniquely

in terms of logA1,..., logA4.

The solution is inserted into the definitions of ai and yields
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The non-linear integral equations, version I – singular kernel
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, d(x) = L log th( 1
2 gx) ·
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1

1

1

1
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
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


, g :=
π

π−2γ

The kernel in Fourier transform notation

K =




σ1 σ2

σ†
2 σT

1



 († interchanges diagonal elements)

σ1 =
cosh((π−3γ)k)

2sinh(γk)sinh((π−2γ)k)




−1 e(π−2γ)k

e(2γ−π)k −1





σ2 =
cosh(γk)

2sinh(γk)sinh((π−2γ)k)




−e(π−2γ)k 1

1 −e(2γ−π)k





which is highly singular: in real space with asymptotics Ki, j(x)≃ |x|.
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The eigenvalue

For x (slightly below the real axis) the eigenvalue splits into purely bulk and finite size part

log[Λ(x− iγ)Λ(x+ i(π− γ))] = L ·λ(x)+κ∗ [logA1 + logA2 + logA3 + logA4]

κ(x) =−i
g

sinh(gx)
, g =

π

π−2γ

Energy expression from derivative at x = 0

E = sin(2γ)
d

dx
log[Λ(x− iγ)Λ(x+ i(π− γ))]

= Le0 − sin(2γ)
∫ ∞

−∞
dx

g2 coshgx

(sinhgx)2
[logA1(x)+ logA2(x)+ logA3(x)+ logA4(x)]

where g = π
π−2γ .
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The ground-state solution and 1st excited state

True ground state solution: logai −d and logAi = log(1+ai) for L = 109
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Reallocating 1 BA root from one line to the other (n =±1) has solution
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with huge changes in the logai functions, but only little in the logAi.
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Why has the kernel to be singular and what are the alternatives I

...with huge changes in the logai functions, but only little in the logAi.

logA1 for ground state and excited state

-20 -10 0 10 20

0

0,2

0,4

0,6
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Why has the kernel to be singular and what are the alternatives II

Claim / Theorem: All of us use the “same” functions and equivalent equations!

Candu, Ikhlef 2013: solve up to L = 102 (?)

use same functions on possibly slightly shifted contours, work with the singular kernel.

Frahm, Seel 2013: solve up to L = 106 (?)

use “practically” same functions, two replaced in the way ãi = 1/a j , then

logai =− log ãi, logAi = log(1+ai) = log(1+1/ãi) = log Ãi − log ãi

Difference in way of organizing of what is on the left and what is on the right hand side.
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The optimal arrangement of the NLIE, version II – regular kernel

Super-great manipulation

a = d +K ∗A

2(a−d) = K ∗2A = K ∗ (2A− (a−d))+K ∗ (a−d)

(2−K)∗ (a−d) = K ∗ (2A− (a−d))

a = d +Kr ∗ (a−d−2A) with Kr :=
K

K −2

This kernel is regular! In Fourier transform notation

Kr =




κ1 κ2

κ†
2 κT

1



 († interchanges diagonal elements)

κ1 =
sinh((π−2γ)k)

2sinh(πk)




1 −e(π−2γ)k

−e(2γ−π)k 1



 , κ2 =
sinh(2γk)

2sinh(πk)




e(π−2γ)k −1

−1 e(2γ−π)k





Regular kernel Kr has one eigenvalue +1 for “momentum” k = 0 with eigenstate (1,−1,1,−1), and two

eigenvalues 0 and one eigenvalue close to 0.
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How to select the states?

Shifting n BA roots from one line to the other yields a winding of the logai(x) functions:

logai(∞)− logai(−∞) =±n2πi. We use this winding number n instead of the

quasi-momentum. Modifications for numerics necessary

a = d +Kr ∗ (a−d−2A) = d +nw+Kr ∗ (a−d−nw̃−2A)

where n = 0,1,2... is the winding number and

w(x) =










w1(x)

w2(x)

w3(x)

w4(x)










, w̃(x) = 2log th
(g

2
x+ i

π

4

)

·










+1

−1

+1

−1










w1(x) =−w4(x) := log th 1
2

(

x+ i
(π

2
− γ
))

+ logth 1
2

(

x+ i
(

3γ− π

2

))

w2(x) =−w3(x) := log th 1
2

(

x− i
(π

2
− γ
))

+ logth 1
2

(

x− i
(

3γ− π

2

))
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Functional equations: Definition of auxiliary functions

Energy expression from derivative at x = 0

E −Le0 =−sin(2γ)
∫ ∞

−∞
dx

g2 coshgx

(sinhgx)2
[logA1(x)+ logA2(x)+ logA3(x)+ logA4(x)]

=
2π

L
vF

[

−1

6
+

2γ

π−2γ
s2

]

, where g =
π

π−2γ
.

Results for L = 2,10,102,103,106, ...,1015 and N = 214 = 16384 (N = 215 = 32768) grid points.

Computation time 40 s (80 s) for 1000 iterations (Intel i7 2.4 GHz), 16 decimals.

Comparison with Bazhanov, Kotousov, Koval, Lukyanov 2019 (ODE/IQFT correspondence)

4s log




LΓ
(

3/2+ γ
π−2γ

)

√
πΓ
(

1+ γ
π−2γ

)



+8s
π− γ

γ
log(2)−2i log

(
Γ(1/2− is)

Γ(1/2+ is)

)

= n2π

Results for n = 1, γ = 0.8: shown is square bracket above [...] +1/6 = 2γ
π−2γ s2

L 2 10 102 103 106 109 1012 1015

NLIE 0.2533... 0.0782... 0.038705... 0.02334953... 0.008440981083... 0.0043238508... 0.002622512... 0.00167...

BKKL20 0.9002... 0.0775... 0.038710... 0.02334963... 0.008440981082... 0.0043238509... 0.002622535... 0.00175...
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What limits the accuracy?

To solve a= d+nw+Kr ∗(a−d−nw̃−2A) where terms in brackets for L= 109,1012 look like
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Wiggles appear for L = 1015. Yet the equations are solved: LHS-RHS=0
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Analytical derivation of correction terms from NLIE version I

We use the NLIE with singular (!) kernel and differentiate it once

(logai)
′ = d′+

4

∑
j=1

K′
i j ∗ log(1+a j)

then we multiply from left and...

∫ ∞

0
dx

4

∑
i=1

log(1+ai(x))(logai(x))
′ =

∫ ∞

0
dx

4

∑
i=1

log(1+ai(x))d
′(x)+

∫ ∞

0
dx

∫ ∞

−∞
dy

4

∑
i, j=1

log(1+ai(x))K
′
i j(x− y) log(1+a j(y))

LHS: change of variable gives dilogarithmic integral, only data ai(0) =, ai(∞) = 1 enter → π2/3.

RHS: 1st term is the wanted object, 2nd term – double integral – can be massaged

∫ ∞

0
dx

∫ ∞

−∞
dy...=

∫ ∞

0
dx

∫ ∞

0
dy...

︸ ︷︷ ︸

=0

+

∫ ∞

0
dx

∫ 0

−∞
dy...

the first term is zero by antisymmetry of the kernel, K′
i j(x− y) =−K′

ji(y− x).
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Analytical derivation of correction terms from NLIE version I

In the second term the kernel K is linear and K′
i j can be replaced by constants

...=− 1

4γ(π−2γ)

∫ ∞

0
dx

∫ 0

−∞
dy

4

∑
i, j=1

(−1)i+ j log(1+ai(x)) log(1+a j(y)) =
|I|2

4γ(π−2γ)

where

I :=
∫ ∞

0
dx log

(1+a1(x))(1+a3(x))

(1+a2(x))(1+a4(x))

such an integral from −∞ to 0 gives −I (and is purely imaginary).

What is I? From the NLIE we derive

n2πi = loga1(+∞)− loga1(−∞) =
1

4γ(π−2γ)

2logL

g
· I

Now we have for the double integral

...= 2π2 2γ

π−2γ

(
πn

2logL

)2

without having solved the NLIE or having applied Wiener-Hopf techniques.
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The supersymmetric sl(2|1) supersymmetric 33̄ model

Derivation of staggered vertex model and proof of integrability by R. Gade (1998)

extensive investigations of spectrum by Essler, Frahm, Saleur (2005)

Bethe ansatz equations as for the QTM of the supersymmetric tJ model

Φ−(u j + i)

Φ−(u j − i)
=−eiϕ qγ(u j + i)

qγ(u j − i)
, j = 1, ...,N

Φ+(γα + i)

Φ+(γα − i)
=−eiϕ qu(γα + i)

qu(γα − i)
, α = 1, ...,M

These equations are the same for the QTM of the tJ model and for the supersymmetric network model.

Characterization of largest eigenvalue differs:

tJ: maximum value of Λ network model: maximum value(s) of Λ · Λ̄

“strange strings” (Essler, Frahm, Saleur 2005)
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Compact notation for NLIEs: network model (version I)

Supersymmetric network model: 6 non-linear integral equations, version I

(

a1

a2

)

=

(

d

d

)

+

(

K −Ks Ks

Ks K −Ks

)

∗
(

A1

A2

)

where a1 and a2 are two copies of the 3d vector a, and A1 and A2 are two copies of the 3d vector A.

Driving terms

d :=






L log th π
2

x− iϕ/2

L log th π
2

x+ iϕ/2

0




 ,

and kernel matrices (in Fourier representation)

K(k) =
1

2coshk/2






e−|k|/2 −e−|k|/2−k 1

−e−|k|/2+k e−|k|/2 1

1 1 0




 , Ks(k) =







1
2sinh |k| − e−k

2sinh |k| − e−k/2

2sinh(k)

− ek

2sinh |k|
1

2sinh |k|
ek/2

2sinh(k)
ek/2

2sinh(k)
− e−k/2

2sinh(k)
0







Good properties: symmetry K(−k)T = K(k), Ks(−k)T = Ks(k) may allow for analytic calculations of CFT

bad properties: Ks is very singular! Kernel of integral equations not integrable!
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NLIEs version II: regular kernels

Most compact notation of NLIE as two weakly coupled 3×3 systems

ai = d ± d̃+K ∗Ai, i = 1,2 for which +,− applies

and additional driving term

d̃ :=
1

2
(K̃ −K)∗ (A1 −A2)−

1

2
K̃ ∗ (a1 −a2)

Regular kernels

K(k) = 1
2coshk/2







e−|k|/2 −e−|k|/2−k 1

−e−|k|/2+k e−|k|/2 1

1 1 0






, K(k) = KT (−k)

K̃(k > 0) =







− 1
ek+1

e−k − e−2k + e−k

ek+1
e−k/2 − e−3k/2

ek

ek+1
− 1

ek+1
0

0 e−k/2 − e−3k/2 −e−k






, K̃(k < 0) := K̃T (−k)
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Numerical solution to NLIE: ground-state

Ground state of model with ϕ = π completely degenerate, but not for ϕ 6= π.

a j :=






logb j

log b̄ j

logc j




 , A j :=






logB j

log B̄ j

logC j






For ϕ = π we know b j = b̄ j = 0, B j = B̄ j = 1, c j =−1,C j = 0.

For ϕ 6= π with d̃ = 0 we find numerically (L = 106)
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Numerical solution to NLIE: excited states, ϕ = π
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Summary

Results:

• Quick derivation of NLIEs

• Understanding of all published NLIE equations from one “master set” of NLIE

• Transformation of the singular form into a regular version

• Numerics by use of regular NLIE up to L15

• Asymptotics analytically derived from singular version of NLIE

• Some results for the 33̄ model with sl(2|1) symmetry: finite size correction O(1/ log L)

To do:

• increase accuracy for numerics, go to L > 1015

• treat the 33̄ model to same level of understanding
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