Quantum local charges in chiral affine Gaudin models

Sylvain Lacroix – Institute for Theoretical Studies

ETHzürich

Workshop – Integrability in Condensed Matter Physics and Quantum Field Theory
February 7th, 2023 – Les Diablerets

Based on [1804.01480, 1804.06751] with B. Vicedo and C.A.S. Young and [2204.06554] with G. Kotousov and J. Teschner
Introduction
Introduction: affine Gaudin models

- **Affine Gaudin models (AGM):** physical systems associated with affine Lie algebras [Feigin Frenkel ’07]
- Field theory built from Kac-Moody currents $\mathcal{J}^{(1)}(x), \ldots, \mathcal{J}^{(N)}(x)$
- Classically integrable: infinite family of (local and non-local) Poisson-commuting charges built from $\mathcal{J}^{(r)}(x)$
- **Quantum integrability still conjectural**
Affine Gaudin models (AGM): physical systems associated with affine Lie algebras [Feigin Frenkel '07]

Field theory built from Kac-Moody currents $\mathcal{J}^{(1)}(x), \ldots, \mathcal{J}^{(N)}(x)$

Clasically integrable: infinite family of (local and non-local) Poisson-commuting charges built from $\mathcal{J}^{(r)}(x)$

Quantum integrability still conjectural

Natural starting point for quantisation: chiral AGM

All $\mathcal{J}^{(r)}(x)$ are left/right-moving fields of a 2d CFT → quantised as a current VOA (vertex operator algebra)

This talk: first results and conjectures on the construction and diagonalisation of quantum local charges in this VOA (Integrable structure in CFT [Bazhanov Lukyanov Zamolodchikov '94, ...])
Affine Gaudin models (AGM): physical systems associated with affine Lie algebras [Feigin Frenkel ’07]

Field theory built from Kac-Moody currents $\mathcal{J}^{(1)}(x), \ldots, \mathcal{J}^{(N)}(x)$

Classically integrable: infinite family of (local and non-local) Poisson-commuting charges built from $\mathcal{J}^{(r)}(x)$

Quantum integrability still conjectural

Natural starting point for quantisation: chiral AGM

All $\mathcal{J}^{(r)}(x)$ are left/right-moving fields of a 2d CFT → quantised as a current VOA (vertex operator algebra)

This talk: first results and conjectures on the construction and diagonalisation of quantum local charges in this VOA (Integrable structure in CFT [Bazhanov Lukyanov Zamolodchikov ’94, ...])

Applications to integrable sigma-models (see talk by J. Teschner)
Contents

1 Classical affine Gaudin models
2 Quantum chiral affine Gaudin models
3 Conclusion and perspectives
Classical affine Gaudin models
Classical affine Gaudin models

Defining data:
- Simple complex Lie algebra \mathfrak{g}
- Parameters: punctures $z_1, \ldots, z_N \in \mathbb{C}$ and levels $\ell_1, \ldots, \ell_N \in \mathbb{C}^*$

Lie algebra conventions: basis $\{t_a\}$
- Structure constants f_{ab}^c, with $[t_a, t_b] = f_{ab}^c t_c$
- Minimal invariant bilinear form η_{ab}, with inverse η^{ab}
Classical affine Gaudin models

Defining data:
- Simple complex Lie algebra g
- Parameters: punctures $z_1, \ldots, z_N \in \mathbb{C}$ and levels $\ell_1, \ldots, \ell_N \in \mathbb{C}^*$

Lie algebra conventions: basis $\{t_a\}$
- Structure constants f_{ab}^c, with $[t_a, t_b] = f_{ab}^c t_c$
- Minimal invariant bilinear form η_{ab}, with inverse η^{ab}

Kac-Moody currents:
- g-valued fields $\mathcal{J}^{(r)}(x) = \mathcal{J}_a^{(r)}(x) t^a$ \hspace{1cm} ($r \in \{1, \ldots, N\}$ and $x \in [0, 2\pi]$)
- Kac-Moody Poisson bracket:

$$\{\mathcal{J}_a^{(r)}(x), \mathcal{J}_b^{(s)}(y)\} = \delta_{rs} \left(f_{ab}^c \mathcal{J}_c^{(r)}(x) \delta(x - y) - \ell_r \eta_{ab} \partial_x \delta(x - y) \right)$$
Gaudin Lax matrix and twist function: (z spectral parameter)

\[\Gamma(z, x) = \sum_{r=1}^{N} \frac{\mathcal{J}(r)(x)}{z - z_r} \quad \text{and} \quad \varphi(z) = \sum_{r=1}^{N} \frac{\ell_r}{z - z_r} \]

- \(\varphi(z) \) contains all the parameters

- **Key formula**: Poisson bracket of the Gaudin Lax matrix

\[\{ \Gamma_a(z, x), \Gamma_b(w, y) \} = - f_{abc} \frac{\Gamma_c(z, x) - \Gamma_c(w, x)}{z - w} \delta(x - y) + \eta_{ab} \frac{\varphi(z) - \varphi(w)}{z - w} \partial_x \delta(x - y) \]
Lax matrix and non-local charges

- **Lax matrix:**

\[\mathcal{L}(z, x) = \frac{\Gamma(z, x)}{\varphi(z)} \]

- \(\{\mathcal{L}_a(z, x), \mathcal{L}_b(w, y)\} \) takes the form of a Maillet bracket [Maillet '85] with non-skew-symmetric \(\mathcal{R} \)-matrix

- **Non-local charges in involution:**

\[\left\{ \text{Tr}_\rho(M(z)), \text{Tr}_{\rho'}(M(w)) \right\} = 0 \]

\[M(z) = \text{PExp} \left(-\int_0^{2\pi} \mathcal{L}(z, x) \, dx \right) \]

Infinitely many charges by Taylor-expansion in \(z \)
Hierarchies of local charges

- Infinite hierarchies of local charges Q^p_i: [SL Magro Vicedo '17]
 - $i \in \{1, \ldots, N - 1\}$ associated to zeroes ζ_i of $\varphi(z)$
 - degrees $p + 1$: $p \in E$, with $E \subset \mathbb{Z}_{\geq 1}$ infinite (depending on \mathfrak{g})
 - Poisson-commuting $\{Q^p_i, Q^q_j\} = 0$
 - not contained in monodromy charges but Poisson-commute with them
Hierarchies of local charges

- Infinite hierarchies of local charges Q^p_i: [SL Magro Vicedo '17]
 - $i \in \{1, \ldots, N - 1\}$ associated to zeroes ζ_i of $\varphi(z)$
 - degrees $p + 1$: $p \in E$, with $E \subset \mathbb{Z}_{\geq 1}$ infinite (depending on \mathfrak{g})
 - Poisson-commuting $\{Q^p_i, Q^q_j\} = 0$
 - not contained in monodromy charges but Poisson-commute with them

- Zeroes of the twist function:

$$\varphi(z) = \sum_{r=1}^{N} \frac{\ell_r}{z - z_r} = K \frac{\prod_{i=1}^{N-1}(z - \zeta_i)}{\prod_{r=1}^{N}(z - z_r)}$$

Two equivalent sets of parameters: (z_r, ℓ_r) and (K, z_r, ζ_i)
Construction of the local charges

- Definition of the local charges:
 \[Q_i^p = \int_0^{2\pi} S_{p+1}(\zeta_i, x) \, dx, \quad S_{p+1}(z, x) = \tau_{a_1 \cdots a_{p+1}}^a \Gamma_{a_1}(z, x) \cdots \Gamma_{a_{p+1}}(z, x) \]

- \(\tau_{a_1 \cdots a_{p+1}}^a \): invariant symmetric \((p + 1)\)-tensor on \(g \)
Construction of the local charges

- **Definition of the local charges:**

 \[Q^p_i = \int_0^{2\pi} S_{p+1}(\zeta, x) \, dx, \quad S_{p+1}(z, x) = \tau^{a_1 \cdots a_{p+1}} \Gamma_a(z, x) \cdots \Gamma_{a_{p+1}}(z, x) \]

- \(\tau^{a_1 \cdots a_{p+1}} \): invariant symmetric \((p + 1)\)-tensor on \(g \) such that

 \[\{ S_{p+1}(z, x), S_{q+1}(w, y) \} = A_{p, q}^{(0)}(z, w ; y) \delta(x - y) + A_{p, q}^{(1)}(z, w ; y) \partial_x \delta(x - y) \]

 with \(A_{p, q}^{(0)}(z, w ; y) = \partial_y (\cdots) + \varphi(z)(\cdots) + \varphi(w)(\cdots) \)

- Ensures that \(\{ Q^p_i, Q^q_j \} = 0 \)

 \[\{ \Gamma_a(z, x), \Gamma_b(w, y) \} = -f_{ab}^c \frac{\Gamma_c(z, x) - \Gamma_c(w, x)}{z - w} \delta(x - y) + \eta_{ab} \frac{\varphi(z) - \varphi(w)}{z - w} \partial_x \delta(x - y) \]
Invariant tensors

\[Q_p^i = \int_0^{2\pi} S_{p+1}(\zeta, x) \, dx, \quad S_{p+1}(z, x) = \tau^{a_1 \cdots a_{p+1}}_p \Gamma_{a_1}(z, x) \cdots \Gamma_{a_{p+1}}(z, x) \]

- Invariant symmetric tensors \(\tau_p \) [Evans Hassan MacKay Mountain '99]
- \(p \) belongs to the set of affine exponents \(E \subset \mathbb{Z}_{\geq 1} \), depending on \(g \)
- Always start with \(p = 1 \) (quadratic tensor)

\[\tau_{1}^{ab} = \eta^{ab} \]
Invariant tensors

\[Q_i^p = \int_{0}^{2\pi} S_{p+1}(\zeta_i, x) \, dx , \quad S_{p+1}(z, x) = \tau_{p}^{a_1 \cdots a_{p+1}} \Gamma_{a_1}(z, x) \cdots \Gamma_{a_{p+1}}(z, x) \]

- Invariant symmetric tensors \(\tau_p \) [Evans Hassan MacKay Mountain '99]
- \(p \) belongs to the set of affine exponents \(E \subset \mathbb{Z}_{\geq 1} \), depending on \(g \)
- Always start with \(p = 1 \) (quadratic tensor)

\[\tau_{1}^{ab} = \eta^{ab} \]

For \(g = sl(k) \), \(E = \{1, \ldots, k - 1, k + 1, \ldots, 2k - 1, 2k + 1, \ldots \} \)

\[\tau_{1}^{ab} = \text{Tr}(t^a t^b) , \quad \tau_{2}^{abc} = \text{Tr}(t^a t^b t^c) \]

\[\tau_{3}^{abcd} = \text{Tr}(t^a t^b t^c t^d) - \frac{3}{2k} \text{Tr}(t^a t^b) \text{Tr}(t^c t^d) , \quad \ldots \]
Other important property of $S_{p+1}(z, x)$:

$$\{S_{p+1}(z, x), J^{\text{diag}}(y)\} = \varphi(z) (\cdots), \quad \text{with} \quad J^{\text{diag}}(y) = \sum_{r=1}^{N} J^{(r)}(y)$$

Implies

$$\{S_{p+1}(\zeta_i, x), J^{\text{diag}}_a(y)\} = 0$$
Diagonal symmetry

- Other important property of $S_{p+1}(z, x)$:

$$\{S_{p+1}(z, x), J^{\text{diag}}(y)\} = \varphi(z)(\cdots), \quad \text{with} \quad J^{\text{diag}}(y) = \sum_{r=1}^{N} J^{(r)}(y)$$

- Implies

$$\{S_{p+1}(\zeta_i, x), J^{\text{diag}}_a(y)\} = 0$$

- Densities $S_{p+1}(\zeta_i, x)$ invariant under diagonal gauge symmetry

$$J^{(r)}(x) \mapsto h(x)^{-1} J^{(r)}(x) h(x) + \ell_r h(x)^{-1} \partial_x h(x), \quad h(x) \in G$$

- Belong to the classical $\hat{g}_{\ell_1} \oplus \cdots \oplus \hat{g}_{\ell_N}$ coset \mathcal{W}-algebra:

$$\mathcal{W} = \left\{\text{gauge-invariant differential polynomials in } J^{(r)}_a(x)\right\}$$
Densities $S_{p+1}(\zeta, x)$ belong to the classical coset \mathcal{W}-algebra:

$$\mathcal{W} = \left\{ \text{gauge-invariant differential polynomials in } J_a^{(r)}(x) \right\}$$

Important element of \mathcal{W}, linear combination of $S_2(\zeta, x)$:

$$T(x) = \frac{\eta^{ab}}{2} \left(\sum_{r=1}^{N} \frac{1}{\ell_r} J_a^{(r)}(x) J_b^{(r)}(x) - \frac{1}{\ell_{\text{diag}}} J_a^{\text{diag}}(x) J_b^{\text{diag}}(x) \right)$$

Recovers the energy-momentum tensor of GKO coset construction:

$$T = \sum_r T^{(r)} - T^{\text{diag}}, \text{ with } T^{(r)} \text{ the Segal-Sugawara tensor of } J^{(r)}$$

T generates x-diffeomorphisms in \mathcal{W} and satisfies classical Virasoro:

$$\{T(x), T(y)\} = -(T(x) + T(y)) \partial_x \delta(x - y)$$
Quantum chiral affine Gaudin models
Quantum chiral affine Gaudin models

- **Chiral affine Gaudin models**: currents $\mathcal{J}^{(r)}(x)$ all left-moving (or right-moving) fields of a 2d CFT \rightarrow quantised as a current VOA

- **Quantum Kac-Moody currents $J^{(r)}(x)$**:

 $$
 \left[J^{(r)}_a(x), J^{(s)}_b(y) \right] = 2\pi \delta_{rs} \left(f_{ab}^c J^{(r)}_c(y) \delta(x - y) + i k_r \eta_{ab} \partial_x \delta(x - y) \right)
 $$

- **Classical limit**:

 $$
 \left[\mathcal{J}^{(r)}_a(x), \mathcal{J}^{(s)}_b(y) \right] = i\hbar \left\{ \mathcal{J}^{(r)}_a(x), \mathcal{J}^{(s)}_b(y) \right\} + O(\hbar^2)
 $$

 with

 $$
 J^{(r)}(x) = \frac{2\pi \mathcal{J}^{(r)}(x) + O(\hbar)}{i\hbar}, \quad k_r = \frac{2\pi \ell_r + O(\hbar)}{\hbar}
 $$
Chiral affine Gaudin models: currents $\mathcal{J}^{(r)}(x)$ all left-moving (or right-moving) fields of a 2d CFT \rightarrow quantised as a current VOA

Quantum Kac-Moody currents $J^{(r)}(x)$:

$$\left[J^{(r)}_a(x), J^{(s)}_b(y)\right] = 2\pi \delta_{rs} \left(f_{ab}^\ c J^{(r)}_c(y) \delta(x - y) + i k_r \eta_{ab} \partial_x \delta(x - y)\right)$$

Classical limit: $[\mathcal{J}^{(r)}_a(x), \mathcal{J}^{(s)}_b(y)] = i\hbar \left\{ \mathcal{J}^{(r)}_a(x), \mathcal{J}^{(s)}_b(y) \right\} + O(\hbar^2)$ with

$$J^{(r)}(x) = \frac{2\pi \mathcal{J}^{(r)}(x) + O(\hbar)}{i\hbar}, \quad k_r = \frac{2\pi \ell_r + O(\hbar)}{\hbar}$$

Operator Product Expansion (OPE):

$$J^{(r)}_a(x)J^{(s)}_b(y) = \delta_{rs} \left(i f_{ab}^\ c J^{(r)}_c(y) \frac{1}{x - y} + \frac{k_r \eta_{ab}}{(x - y)^2}\right) + \text{reg}$$
Quantum \mathcal{W}-algebra

\[J_a^{(r)}(x)J_b^{(s)}(y) = \delta_{rs} \left(\frac{i f_{ab} c J_c^{(r)}(y)}{x - y} + \frac{k_r \eta_{ab}}{(x - y)^2} \right) + \text{reg} \]

- Diagonal current:

\[J^{\text{diag}}(x) = \sum_{r=1}^{N} J^{(r)}(x), \quad \text{with level} \quad k_{\text{diag}} = \sum_{r=1}^{N} k_r \]

- Quantum $\hat{g}_{k_1} \oplus \cdots \oplus \hat{g}_{k_N}$ coset \mathcal{W}-algebra:

\[\mathcal{W} = \left\{ \text{normal ordered differential polynomials in } J_a^{(r)}(x) \right\} \]

\[\text{having regular OPE with } J^{\text{diag}}(y) \]

- Algebra of extended conformal symmetry, closed under OPEs
GKO energy-momentum tensor:

\[T(x) = \frac{\eta_{ab}}{2} \left(\sum_{r=1}^{N} \frac{1}{k_r + h^\vee} :J^{(r)}_a(x)J^{(r)}_b(x): - \frac{1}{k_{\text{diag}} + h^\vee} :J^{\text{diag}}_a(x)J^{\text{diag}}_b(x): \right) \]

with \(h^\vee \) the dual Coxeter number, defined by \(f_{ac}^d f_{bd}^c = 2h^\vee \eta_{ab} \)

- Satisfies Virasoro OPEs:

\[T(x)T(y) = \frac{\partial T(y)}{x - y} + \frac{2T(y)}{(x - y)^2} + \frac{c}{2(x - y)^4} + \text{reg} \]

with central charge \(c = \left(\sum_r \frac{k_r}{k_r + h^\vee} - \frac{k_{\text{diag}}}{k_{\text{diag}} + h^\vee} \right) \text{dim } g \).
GKO energy-momentum tensor

- **GKO energy-momentum tensor:**

\[
T(x) = \frac{\eta^{ab}}{2} \left(\sum_{r=1}^{N} \frac{1}{k_r + h^\vee} : J^{(r)}_a(x) J^{(r)}_b(x) : - \frac{1}{k_{\text{diag}} + h^\vee} : J_{a}^{\text{diag}}(x) J_{b}^{\text{diag}}(x) : \right)
\]

with \(h^\vee \) the dual Coxeter number, defined by \(f_{ac}^d f_{bd}^c = 2h^\vee \eta_{ab} \)

- **Satisfies Virasoro OPEs:**

\[
T(x)T(y) = \frac{\partial T(y)}{x - y} + \frac{2T(y)}{(x - y)^2} + \frac{c}{2(x - y)^4} + \text{reg}
\]

with **central charge** \(c = \left(\sum_r \frac{k_r}{k_r + h^\vee} - \frac{k_{\text{diag}}}{k_{\text{diag}} + h^\vee} \right) \dim g \)

- **In terms of Fourier modes:**

\[
T(x) = \sum_{n \in \mathbb{Z}} L_n e^{-inx} - \frac{c}{24}, \quad [L_n, L_m] = (n - m)L_{n+m} + \frac{c}{12} n(n^2 - 1) \delta_{n+m,0}
\]
Question: infinite family of commuting charges in W, quantising Q^p_i?
Quantum local charges?

- **Question:** infinite family of commuting charges in W, quantising Q^p_i?

- **Reminder on classical local charges:**

 $$Q^p_i = \int_0^{2\pi} S_{p+1}(\zeta_i, x) \, dx, \quad S_{p+1}(z, x) = \tau_p^{a_1\cdots a_{p+1}} \Gamma_{a_1}(z, x) \cdots \Gamma_{a_{p+1}}(z, x)$$

- Satisfy $\{Q^p_i, Q^q_j\} = 0$ and $S_{p+1}(\zeta_i, x) \in \mathcal{W}$ using

 1. $\{S_{p+1}(z, x), S_{q+1}(w, y)\} = \sum_{k=0,1} A_{p,q}^{(k)}(z, w ; y) \partial_x^k \delta(x - y)$

 with $A_{p,q}^{(0)}(z, w ; y) = \partial_y (\cdots) + \varphi(z)(\cdots) + \varphi(w)(\cdots)$
 2. $\{S_{p+1}(z, x), J^{\text{diag}}(y)\} = \varphi(z)(\cdots)$
Quantum local charges?

- Question: infinite family of commuting charges in W, quantising Q_{i}^{p}?

- Reminder on classical local charges:

$$Q_{i}^{p} = \int_{0}^{2\pi} S_{p+1}(\zeta_{i}, x) dx,$$

$$S_{p+1}(z, x) = \tau_{p}^{a_{1} \cdots a_{p+1}} \Gamma_{a_{1}}(z, x) \cdots \Gamma_{a_{p+1}}(z, x)$$

- Satisfy $\{Q_{i}^{p}, Q_{j}^{q}\} = 0$ and $S_{p+1}(\zeta_{i}, x) \in W$ using

1. $\{S_{p+1}(z, x), S_{q+1}(w, y)\} = \sum_{k=0,1} A_{p, q}^{(k)}(z, w ; y) \partial_{x}^{k} \delta(x - y)$

 with $A_{p, q}^{(0)}(z, w ; y) = \partial_{y} (\cdots) + \varphi(z)(\cdots) + \varphi(w)(\cdots)$

2. $\{S_{p+1}(z, x), J^{\text{diag}}(y)\} = \varphi(z)(\cdots)$

- Quantum equivalent of conditions (1) and (2)?
Quantum Gaudin Lax matrix and twist function:

- Quantum Gaudin Lax matrix and twist function:
 \[
 \Gamma^{(qt)}(z, x) = \sum_{r=1}^{N} \frac{J(r)(x)}{z - z_r} \quad \text{and} \quad \varphi^{(qt)}(z) = \sum_{r=1}^{N} \frac{k_r}{z - z_r}
 \]

- Classical limit:
 \[
 \Gamma^{(qt)}(z, x) = \frac{2\pi \Gamma(z, x) + O(\hbar)}{i\hbar}, \quad \varphi^{(qt)}(z) = \frac{2\pi \varphi(z) + O(\hbar)}{\hbar}
 \]
Quantum Gaudin Lax matrix and twist function:

- **Quantum Gaudin Lax matrix and twist function:**

 \[
 \Gamma^{(qt)}(z, x) = \sum_{r=1}^{N} \frac{J(r)(x)}{z - z_r} \quad \text{and} \quad \varphi^{(qt)}(z) = \sum_{r=1}^{N} \frac{k_r}{z - z_r}
 \]

- **Classical limit:**

 \[
 \Gamma^{(qt)}(z, x) = \frac{2\pi \Gamma(z, x) + O(\hbar)}{i\hbar}, \quad \varphi^{(qt)}(z) = \frac{2\pi \varphi(z) + O(\hbar)}{\hbar}
 \]

- **OPE of the quantum Gaudin Lax matrix:**

 \[
 \Gamma^{(qt)}_a(z, x) \Gamma^{(qt)}_b(w, y) = -i f_{ab}^c \frac{\Gamma^{(qt)}_c(z, y) - \Gamma^{(qt)}_c(w, y)}{x - y} - \frac{\eta_{ab}}{(x - y)^2} \frac{\varphi^{(qt)}(z) - \varphi^{(qt)}(w)}{z - w} + \text{reg}
 \]
Quantum quadratic density

- Quantum quadratic density:

\[S_2(z, x) = \eta^{ab} : \Gamma^{(qt)}_a(z, x) \Gamma^{(qt)}_b(z, x) : \]

- From OPE \(\Gamma^{(qt)}(z, x) \Gamma^{(qt)}(w, y) \) we get

\[S_2(z, x)S_2(w, y) = \sum_{k=0}^{3} \frac{A_{1,1}^{(k)}(z, w ; y)}{(x - y)^{k+1}} + \text{reg} \]

with \(A_{1,1}^{(0)}(z, w ; y) = \partial_y (\cdots) + D_{z,1}(\cdots) + D_{w,1}(\cdots) \) and twisted derivative

\[D_{z,p}f(z) = \partial_z f(z) - \frac{p}{h^\vee} \varphi^{(qt)}(z)f(z) \]
Quantum quadratic density

- **Quantum quadratic density:**

 \[S_2(z, x) = \eta^{ab} \cdot \Gamma^{(qt)}_a(z, x) \Gamma^{(qt)}_b(z, x) : \]

- From OPE \(\Gamma^{(qt)}(z, x) \Gamma^{(qt)}(w, y) \) we get

 \[
 S_2(z, x)S_2(w, y) = \sum_{k=0}^{3} \frac{A^{(k)}_{1,1}(z, w ; y)}{(x - y)^{k+1}} + \text{reg}
 \]

 with

 \[
 A^{(0)}_{1,1}(z, w ; y) = \partial_y (\cdots) + D_{z,1}(\cdots) + D_{w,1}(\cdots) \]

 and twisted derivative

 \[
 D_{z,p}f(z) = \partial_z f(z) - \frac{p}{\hbar^\vee} \varphi^{(qt)}(z)f(z) = -\frac{2\pi p}{\hbar^\vee \hbar} \left(\varphi(z)f(z) + O(\hbar) \right)
 \]
Quantum quadratic density

- Quantum quadratic density:

\[S_2(z, x) = \eta^{ab} : \Gamma_{a}^{(qt)}(z, x) \Gamma_{b}^{(qt)}(z, x) : \]

- From OPE \(\Gamma^{(qt)}(z, x) \Gamma^{(qt)}(w, y) \) we get

\[
S_2(z, x)S_2(w, y) = \sum_{k=0}^{3} \frac{A_{1,1}^{(k)}(z, w ; y)}{(x - y)^{k+1}} + \text{reg}
\]

with \(A_{1,1}^{(0)}(z, w ; y) = \partial_y (\cdots) + D_{z,1} (\cdots) + D_{w,1} (\cdots) \) and twisted derivative

\[
D_{z,p} f(z) = \partial_z f(z) - \frac{p}{\hbar^{\nu}} \varphi^{(qt)}(z) f(z) = -\frac{2\pi p}{\hbar^{\nu} \hbar} \left(\varphi(z) f(z) + O(\hbar) \right)
\]

- Similarly, \(S_2(z, x)J_{\text{diag}}(y) = D_{z,1} (\cdots) + \text{reg} \)

- How to build gauge-invariant commuting charges from \(S_2(z, x) \)?
Function $\mathcal{P}(z)$ and Pochhammer integrals

- Introduce multi-valued function

$$\mathcal{P}(z) = \prod_{r=1}^{N} (z - z_r)^{k_r}, \quad \partial_z \mathcal{P}(z) = \varphi^{(qt)}(z) \mathcal{P}(z)$$

- Satisfies $\mathcal{P}(z)^{-p/h^\vee} D_{z,p} f(z) = \partial_z (\mathcal{P}(z)^{-p/h^\vee} f(z))$
Function $\mathcal{P}(z)$ and Pochhammer integrals

- Introduce multi-valued function
 \[\mathcal{P}(z) = \prod_{r=1}^{N} (z - z_r)^{k_r}, \quad \partial_z \mathcal{P}(z) = \varphi^{(q)}(z) \mathcal{P}(z) \]

- Satisfies $\mathcal{P}(z)^{-p/h^\vee} D_{z,p} f(z) = \partial_z (\mathcal{P}(z)^{-p/h^\vee} f(z))$

- γ in $P = \{\text{closed contours on which } \mathcal{P}(z) \text{ has a single-valued branch}\}$:
 \[\oint_{\gamma} \mathcal{P}(z)^{-p/h^\vee} D_{z,p} f(z) \, dz = 0 \]

- Pochhammer contours:
Quantum quadratic charges

- Quantum quadratic densities and charges: $\gamma \in P$

$$Q^1_\gamma = \int_0^{2\pi} W_{2,\gamma}(x) \, dx, \quad W_{2,\gamma}(x) = \oint \mathcal{P}(z)^{-1/h} S_2(z, x) \, dz$$

- Since $S_2(z, x) J^{\text{diag}}(y) = D_{z,1}(\cdots) + \text{reg}$:

$$W_{2,\gamma}(x) J^{\text{diag}}(y) = \text{reg}, \quad \text{hence} \quad W_{2,\gamma}(x) \in W$$

- From OPE $S_2(z, x) S_2(w, y)$:

$$[Q^1_\gamma, Q^1_{\gamma'}] = 0, \quad \forall \gamma, \gamma' \in P$$

- Pochhammer integrals reminiscent of [Lukyanov '13, Bazhanov Lukyanov '13] (ODE/IQFT correspondence for the Fateev integrable structure)
Higher-degree quantum charges: conjecture

- **Conjecture:** for every \(p \in E \), there exist

\[
S_{p+1}(z, x) = \tau_{p}^{a_1 \cdots a_{p+1}} : \Gamma_{a_1}^{(q_t)}(z, x) \cdots \Gamma_{a_{p+1}}^{(q_t)}(z, x) : + \ldots
\]

with quantum corrections built from \(\partial_z^\alpha \partial_x^\beta \Gamma_{a}^{(q_t)}(z, x) \), such that

1. \[
S_{p+1}(z, x)S_{q+1}(w, y) = \sum_{k \geq 0} \frac{A_{p,q}^{(k)}(z, w ; y)}{(x - y)^{k+1}} + \text{reg}
\]
 with \(A_{p,q}^{(0)}(z, w ; y) = \partial_y (\cdots) + D_{z,p} (\cdots) + D_{w,q} (\cdots) \)

2. \[
S_{p+1}(z, x)J_{\text{diag}}^\gamma (y) = D_{z,p} (\cdots) + \text{reg}
\]

- **Consequence:** commuting charges with gauge-invariant densities

\[
Q_{\gamma}^p = \int_{0}^{2\pi} W_{p+1,\gamma}^{}(x) \, dx , \quad W_{p+1,\gamma}^{}(x) = \int_{\gamma} \mathcal{P}(z)^{-p/h^\gamma} S_{p+1}(z, x) \, dz
\]
First checks of the conjecture:

- **quadratic** $S_2(z, x)$ for any g
- **cubic** $S_3(z, x)$ for $g = sl(k), \ k > 2$ [SL Vicedo Young '18]
- **quartic** $S_4(z, x)$ for $g = sl(2)$ [Kotousov SL Teschner '22, Franzini Young '22]
First checks of the conjecture:

- quadratic $S_2(z, x)$ for any g
- cubic $S_3(z, x)$ for $g = \mathfrak{sl}(k), \ k > 2$ [SL Vicedo Young '18]
- quartic $S_4(z, x)$ for $g = \mathfrak{sl}(2)$ [Kotousov SL Teschner '22, Franzini Young '22]
Higher-degree quantum charges: first checks

- **First checks of the conjecture:**
 - quadratic $S_2(z, x)$ for any g
 - cubic $S_3(z, x)$ for $g = \mathfrak{sl}(k), \ k > 2$ [SL Vicedo Young '18]
 - quartic $S_4(z, x)$ for $g = \mathfrak{sl}(2)$ [Kotousov SL Teschner '22, Franzini Young '22]

\[
S_4(z) = \tau_3^{abcd} : \Gamma_a(z)\Gamma_b(z)\Gamma_c(z)\Gamma_d(z) : + \frac{5i}{4} f^{abc} : \partial_x\Gamma_a(z)\partial_z\Gamma_b(z)\Gamma_c(z) : \\
+ \frac{\eta^{ab}}{48} \left(45 \phi(z)^2 : \partial_x\Gamma_a(z)\partial_x\Gamma_b(z) : - 140 : \partial_z^2\partial_x\Gamma_a(z)\partial_x\Gamma_b(z) : - 30 : \partial_z\partial_x\Gamma_a(z)\partial_z\partial_x\Gamma_b(z) : \right) \\
+ \frac{5\eta^{ab}}{12} \left(3 : \partial_z\partial_x^2\Gamma_a(z)\partial_z\Gamma_b(z) : - : \partial_z^2\partial_x^2\Gamma_a(z)\Gamma_b(z) : \right)
\]
Classical limit

\[
W_{p+1,\gamma}(x) = \oint_{\gamma} \mathcal{P}(z)^{-p/h^\gamma} S_{p+1}(z, x) \, dz \quad \text{with}
\]

\[
S_{p+1}(z, x) = \tau_p^{a_1 \cdots a_{p+1}} : \Gamma_{a_1}^{(q_t)}(z, x) \cdots \Gamma_{a_{p+1}}^{(q_t)}(z, x) : + \ldots
\]

- Classical limit: with \(\rho'(z) = \varphi(z) \)

\[
\Gamma^{(q_t)}(z, x) = \frac{2\pi \Gamma(z, x) + O(\hbar)}{i\hbar}, \quad \mathcal{P}(z) = \exp \left(\frac{2\pi}{\hbar} (\rho(z) + O(\hbar)) \right)
\]

\[
W_{p+1,\gamma}(x) \propto \oint_{\gamma} \exp \left(-\frac{2\pi p}{\hbar \sqrt{\hbar}} (\rho(z) + O(\hbar)) \right) \left(S_{p+1}(z, x) + O(\hbar) \right) \, dz
\]
Classical limit

\[W_{p+1,\gamma}(x) = \oint_{\gamma} \mathcal{P}(z)^{-p/h^\gamma} S_{p+1}(z, x) \, dz \quad \text{with} \]

\[S_{p+1}(z, x) = \tau_p^{a_1 \cdots a_{p+1}} : \Gamma^{(qt)}(z, x) \cdots \Gamma^{(qt)}(z, x) : + \ldots \]

- **Classical limit:** with \(\rho'(z) = \varphi(z) \)

\[\Gamma^{(qt)}(z, x) = \frac{2\pi \Gamma(z, x) + O(\hbar)}{i\hbar}, \quad \mathcal{P}(z) = \exp \left(\frac{2\pi}{\hbar} \left(\rho(z) + O(\hbar) \right) \right) \]

\[W_{p+1,\gamma}(x) \propto \oint_{\gamma} \exp \left(-\frac{2\pi}{h^\gamma \hbar} \left(\rho(z) + O(\hbar) \right) \right) \left(S_{p+1}(z, x) + O(\hbar) \right) \, dz \]

- **In the limit** \(\hbar \to 0 \), saddle-point approximation: integral localises at the extrema of \(\rho(z) \), i.e. the zeroes \(\zeta_i \) of \(\varphi(z) \)

\[\to W_{p+1,\gamma}(x) \text{ yields a linear combination of } S_{p+1}(\zeta_i, x) \]
Spectrum of the local charges

- Spectrum of the charges Q^p_γ on representations of $\hat{g} \oplus N$?

- Quantisation of chiral AGMs related to conjectured “affine” Langlands geometric correspondence [Feigin Frenkel ’07, Frenkel Hernandez ’16, SL Vicedo Young ’18, Gaiotto Lee Vicedo Wu ’20, Kotousov Lukyanov ’21]

 ⇨ conjecture

- ODE/IQFT correspondence [Dorey Tateo ’99, Bazhanov Lukyanov Zamolodchikov ’03, Lukyanov ’13, Bazhanov Lukyanov ’13, ...]
Spectrum of the local charges

- Spectrum of the charges Q^p_γ on representations of $\widehat{g} \oplus N$?

- Quantisation of chiral AGMs related to conjectured “affine” Langlands geometric correspondence [Feigin Frenkel ’07, Frenkel Hernandez ’16, SL Vicedo Young ’18, Gaiotto Lee Vicedo Wu ’20, Kotousov Lukyanov ’21]

 ⇨ conjecture

- ODE/IQFT correspondence [Dorey Tateo ’99, Bazhanov Lukyanov Zamolodchikov ’03, Lukyanov ’13, Bazhanov Lukyanov ’13, …]

- Algebraic Bethe ansatz for chiral AGMs (acting on highest-weight representations): precise conjectures for the eigenvectors and eigenvalues of Q^p_γ and first checks
 [Schechtman Varchenko ’91, Feigin Frenkel ’07, SL Vicedo Young ’18 ’18]
Example: Fateev integrable structure [Fateev ’96]

- Two punctures \(N = 2 \) and \(g = \mathfrak{sl}(2) \)

\[
\frac{\mathfrak{sl}(2)_{k_1} \oplus \mathfrak{sl}(2)_{k_2}}{\mathfrak{sl}(2)_{k_1 + k_2}^{\text{diag}}} \text{ coset}
\]

- Quadratic and quartic charges \(Q^1_\gamma \) and \(Q^3_\gamma \) [Kotousov SL Teschner ’22]

\[
W_{2,\gamma} \propto T^{\text{GKO}} = \frac{\eta^{ab}}{2} \left(\frac{J^{(1)}_a J^{(1)}_b}{k_1 + 2} + \frac{J^{(2)}_a J^{(2)}_b}{k_2 + 2} - \frac{J^{\text{diag}}_a J^{\text{diag}}_b}{k_1 + k_2 + 2} \right)
\]
Example: Fateev integrable structure

- **Example:** Fateev integrable structure [Fateev '96]
- **Two punctures** $N = 2$ and $g = \mathfrak{sl}(2)$

$$\frac{\mathfrak{sl}(2)_{k_1} \oplus \mathfrak{sl}(2)_{k_2}}{\mathfrak{sl}(2)_{k_1+k_2}} \text{ coset}$$

- **Quadratic and quartic charges** Q_1^γ and Q_3^γ [Kotousov SL Teschner '22]

$$W_{2,\gamma} \propto T^{\text{GKO}} = \frac{\eta^{ab}}{2} \left(\frac{:\mathcal{J}_a^{(1)} \mathcal{J}_b^{(1)} :}{k_1 + 2} + \frac{:\mathcal{J}_a^{(2)} \mathcal{J}_b^{(2)} :}{k_2 + 2} - \frac{:\mathcal{J}_a^{\text{diag}} \mathcal{J}_b^{\text{diag}} :}{k_1 + k_2 + 2} \right)$$

- **Various comparisons with** [Fateev '96, Feigin Semikhatov '01, Lukyanov Zamolodchikov '12, Bazhanov Lukyanov '13, Bazhanov Kotousov Lukyanov '18]:
 - Q_1^γ and Q_3^γ agree with screening-charge computation
 - some checks concerning non-local charges
 - some checks concerning ODE/IQFT correspondence
Example: Fateev integrable structure

- Example: Fateev integrable structure [Fateev ’96]
- Two punctures \(N = 2 \) and \(g = \mathfrak{sl}(2) \)

\[
\frac{\mathfrak{sl}(2)_{k_1} \oplus \mathfrak{sl}(2)_{k_2}}{\mathfrak{sl}(2)_{k_1+k_2}} \text{ coset}
\]

- Quadratic and quartic charges \(Q^1_\gamma \) and \(Q^3_\gamma \) [Kotousov SL Teschner ’22]

\[
W_{2,\gamma} \propto T^{\text{GKO}} = \frac{\eta^{ab}}{2} \left(\frac{J_a^{(1)} J_b^{(1)}}{k_1+2} + \frac{J_a^{(2)} J_b^{(2)}}{k_2+2} - \frac{J_a^{\text{diag}} J_b^{\text{diag}}}{k_1+k_2+2} \right)
\]

- Various comparisons with [Fateev ’96, Feigin Semikhatov ’01, Lukyanov Zamolodchikov ’12, Bazhanov Lukyanov ’13, Bazhanov Kotousov Lukyanov ’18]:
 - \(Q^1_\gamma \) and \(Q^3_\gamma \) agree with screening-charge computation
 - some checks concerning non-local charges
 - some checks concerning ODE/IQFT correspondence
Example: Fateev integrable structure [Fateev ’96]

Two punctures $N = 2$ and $g = \mathfrak{sl}(2)$

$$\frac{\mathfrak{sl}(2)_{k_1} \oplus \mathfrak{sl}(2)_{k_2}}{\mathfrak{sl}(2)_{k_1 + k_2}}$$

Quadratic and quartic charges Q^1_γ and Q^3_γ [Kotousov SL Teschner ’22]

$$W_{2,\gamma} \propto T^{\text{GKO}} = \frac{\eta^{ab}}{2} \left(\frac{J_a^{(1)} J_b^{(1)}}{k_1 + 2} + \frac{J_a^{(2)} J_b^{(2)}}{k_2 + 2} - \frac{J_a^{\text{diag}} J_b^{\text{diag}}}{k_1 + k_2 + 2} \right)$$

Various comparisons with [Fateev ’96, Feigin Semikhatov ’01, Lukyanov Zamolodchikov ’12, Bazhanov Lukyanov ’13, Bazhanov Kotousov Lukyanov ’18]:

- Q^1_γ and Q^3_γ agree with screening-charge computation
- some checks concerning non-local charges
- some checks concerning ODE/IQFT correspondence
Conclusion and perspectives
Conclusion and perspectives

- Quantum local charges in chiral AGMs: first results and conjectures
- Full proof in the spirit of [Feigin Frenkel Reshetikhin ’94] using \hat{g}?
Conclusion and perspectives

- Quantum local charges in chiral AGMs: first results and conjectures
- Full proof in the spirit of [Feigin Frenkel Reshetikhin '94] using \(\hat{g} \)?

- Non-local charges: problem of non-ultralocality [Maillet '85] but also some first results and conjectures [Feigin Frenkel '07, Frenkel Hernandez '16, Bazhanov Kotousov Lukyanov '18, Gaiotto Lee Vicedo Wu '20, Kotousov Lukyanov '21, Kotousov SL Teschner '22]

- Recover various integrable hierarchies: Fateev, KdV, Drinfeld-Sokolov, ...
- Generalisations: higher-order poles, cyclotomic models, ...
- Relations to toroidal algebras, affine Yangians, 4d-Chern-Simons, ...
- Applications to integrable sigma-models [Teschner's talk]
Conclusion and perspectives

- Quantum local charges in chiral AGMs: first results and conjectures
- Full proof in the spirit of [Feigin Frenkel Reshetikhin '94] using \hat{g}?
- Non-local charges: problem of non-ultralocality [Maillet '85] but also some first results and conjectures [Feigin Frenkel '07, Frenkel Hernandez '16, Bazhanov Kotousov Lukyanov '18, Gaiotto Lee Vicedo Wu '20, Kotousov Lukyanov '21, Kotousov SL Teschner '22]
- Recover various integrable hierarchies: Fateev, KdV, Drinfeld-Sokolov, ...
Conclusion and perspectives

- Quantum local charges in chiral AGMs: first results and conjectures
- Full proof in the spirit of [Feigin Frenkel Reshetikhin '94] using \(\hat{g} \)?
- Non-local charges: problem of non-ultralocality [Maillet '85] but also some first results and conjectures [Feigin Frenkel '07, Frenkel Hernandez '16, Bazhanov Kotousov Lukyanov '18, Gaiotto Lee Vicedo Wu '20, Kotousov Lukyanov '21, Kotousov SL Teschner '22]
- Recover various integrable hierarchies: Fateev, KdV, Drinfeld-Sokolov, ...
- Generalisations: higher-order poles, cyclotomic models, ...
- Relations to toroidal algebras, affine Yangians, 4d-Chern-Simons, ...
- Applications to integrable sigma-models [Teschner’s talk]
Thank you for your attention!
Spectrum of the local charges
Spectrum of the local charges

- Quantisation of chiral AGMs related to conjectured “affine” Langlands geometric correspondence [Feigin Frenkel ’07, Frenkel Hernandez ’16, SL Vicedo Young ’18, Gaiotto Lee Vicedo Wu ’20, Kotousov Lukyanov ’21]

- Common eigenvector of $Q^p_\gamma \leftrightarrow$ affine $L^{\hat{g}}$-oper (differential operator depending on $\text{rk}(\mathfrak{g})$ functions $\nu_k(z)$, e.g. $-\partial_z^2 + \nu(z) + \chi \mathcal{P}(z)$ for $\mathfrak{g} = \mathfrak{sl}_2$)

- Conjectured eigenvalue of Q^p_γ: $u_p(z)$ built from $\nu_k(z)$

$$I^p_\gamma = \oint_\gamma \mathcal{P}(z)^{-p/\hbar^\vee} u_p(z) \, dz$$

- ODE/IQFT correspondence [Dorey Tateo ’99, Bazhanov Lukyanov Zamolodchikov ’03, Lukyanov ’13, Bazhanov Lukyanov ’13, ...]
Bethe ansatz

[Schechtman Varchenko ’91, Feigin Frenkel ’07, SL Vicedo Young ’18 ’18]

- Hilbert space: tensor product of N highest-weight representations of \widehat{g}
- Bethe vector with M excitations: $\Psi_{\alpha_1,\ldots,\alpha_M}(w_1,\ldots,w_M)$
 ($\{\alpha_j\}$ are simple roots of \widehat{g}, $\{w_j\} \subset \mathbb{C}$ are the Bethe roots)

- Conjecture:
 - eigenvector of $Q_p^\gamma \Leftrightarrow \{w_j\}$ satisfy Bethe ansatz equations
 - associated affine oper \Leftrightarrow Miura oper with certain regularity properties

- First checks:
 - proven for quadratic Q_1^γ, for any g, any N and any M
 - proven for cubic Q_2^γ for $g = \mathfrak{sl}(k)$ ($k > 2$), any N and $M = 0, 1, 2$
Example: the Fateev integrable structure
Chiral AGM with $N = 2$ currents

- Take $N = 2$, i.e. 2 punctures in the complex plane
- By translation and dilation of z, we can fix $z_1 = 0$ and $z_2 = 1$

$$\Gamma^{(qt)}(z, x) = \frac{J^{(1)}(x)}{z} + \frac{J^{(2)}(x)}{z - 1} \quad \text{and} \quad P(z) = z^{k_1}(z - 1)^{k_2}$$

- Local observables: $(\hat{g}_{k_1} \oplus \hat{g}_{k_2})/\hat{g}_{k_1+k_2}$ coset \mathcal{W}-algebra
- One Pochhamer contour γ and Euler B-function integrals:

$$B(a, b) = \oint_{\gamma} z^a(z - 1)^b \, dz$$
Quadratic density

$\Gamma^{(qt)}(z, x) = \frac{J^{(1)}(x)}{z} + \frac{J^{(2)}(x)}{z - 1}$ and $\mathcal{P}(z) = z^{k_1}(z - 1)^{k_2}$

- Quadratic density:

$$W_{2, \gamma}(x) = \eta^{ab} \int_\gamma \mathcal{P}(z)^{-1/h^\vee} : \Gamma^{(qt)}_a(z, x) \Gamma^{(qt)}_b(z, x) : \, dz$$

- Explicitely computed using Euler B-function:

$$W_{2, \gamma}(x) \propto \frac{\eta^{ab}}{2} \left(\frac{\mathcal{J}_a^{(1)}(x) \mathcal{J}_b^{(1)}(x)}{k_1 + h^\vee} + \frac{\mathcal{J}_a^{(2)}(x) \mathcal{J}_b^{(2)}(x)}{k_2 + h^\vee} - \frac{\mathcal{J}^{\text{diag}}(x) \mathcal{J}^{\text{diag}}(x)}{k_1 + k_2 + h^\vee} \right)$$

- Recover the GKO coset energy-momentum tensor (quantum corrections by h^\vee come from Pochhammer integrals)
Quartic density for $g = sl_2$

- Further specialise to $g = sl_2$
- $\hat{sl}(2)_{k_1} \oplus \hat{sl}(2)_{k_2}/\hat{sl}(2)_{k_1+k_2}^\text{diag}$ coset: corner-brane \mathcal{W}-algebra

 [Fateev ’96, Feigin Semikhatov ’01, Lukyanov Zamolodchikov ’12]:
 - one spin-2 field: energy-momentum tensor T
 - one spin-3 field: descendant ∂T
 - three spin-4 fields: descendants $\partial^2 T$, $:T^2:$ and primary $W_{4,P}$
Quartic density for $g = \mathfrak{sl}_2$

- Further specialise to $g = \mathfrak{sl}_2$
- $\hat{\mathfrak{sl}}(2)_{k_1} \oplus \hat{\mathfrak{sl}}(2)_{k_2}/\hat{\mathfrak{sl}}(2)_{k_1+k_2}^\text{diag}$ coset: corner-brane \mathcal{W}-algebra
 - [Fateev '96, Feigin Semikhatov '01, Lukyanov Zamolodchikov '12]:
 - one spin-2 field: energy-momentum tensor T
 - one spin-3 field: descendant ∂T
 - three spin-4 fields: descendants $\partial^2 T$, $:T^2:$ and primary $W_{4,P}$

- Quartic density from AGM construction: [Kotousov SL Teschner '22]

 $$W_{4,\gamma}(x) \propto W_{4,P}(x) + \delta_1 :T^2(x): + \delta_2 \partial^2 T(x)$$

 $$\delta_1 = \frac{15(k_1 + 2)(3k_1 + 4)(k_2 + 2)(3k_2 + 4)(k_1 + k_2 + 2)(3k_1 + 3k_2 + 8)}{176 - 44(k_1 + 2)^2 - 44(k_2 + 2)^2 - k_1 k_2(37k_1 + 37k_2 + 192)}$$

- Agrees with screening-charge computation in Fateev integrable structure [Fateev '96, Feigin Semikhatov '01, Lukyanov Zamolodchikov '12]