Constant mean curvature embeddings and the Fateev model IQFT

Gleb Kotousov

Leibniz University Hannover

based on joint work with V. V. Bazhanov and S. L. Lukyanov hep-th/1409.0449

Integrability in Condensed Matter Physics and IQFT SwissMAP research station, $3^{\rm rd}$ - $12^{\rm th}$ of February 2023

Outline

```
The ODE/IQFT (ODE/IM,...) correspondence [Voros'92; Dorey-Tateo'99; BLZ'98,03; LZ'10]
```

```
Classically integrable system \iff Spectral problem in (non-linear PDE \bigodot ) any \hbar integrable QFT
```

```
Special case explored in [Bazhanov, GK, Lukyanov '13,'14]:
```

 Modified sinh-Gordon PDE and integrable QFT formulated by Fateev'96 (first formulated in [Lukyanov'13])

Plan:

- ullet Constant mean curvature embedding of punctured Riemann sphere into AdS $_3$ and its numerical solution
- Relation to the Fateev model

Why Fateev model?

More transparent mathematical structures

Fateev model
$$\sim$$
 Hypergeometric equation (Fuchsian ODE with 3 regular singular points)

KdV/sin(h)- \sim Confluent hypergeometric equation (irregular singularity at ∞)

ullet Fateev model in certain parameter domain dual to integrable deformation of $\mathrm{SU}(2)$ Principal Chiral Field

ODE/IQFT approach to integrable non-linear sigma models

- First principles quantization of integrable non-linear sigma models initiated in [Polyakov, Wiegmann'83; Faddeev, Reshetikhin'86]
 - \approx 30 year pause due to non-ultralocality problem [Maillet'86]
- Fateev model = starting point for developing a new approach to sigma models based on ODE/IQFT correspondence
 [Bazhanov, GK, Lukyanov'14 '17'18; GK, Lacroix, Teschner '22]
- Potential applications to:
 - (i) Mathematical physics: asymptotic freedom, large *N* expansion, dualities, instanton counting and resurgence (e.g., Bajnok's talk at this conference) . . .
 - (ii) Condensed Matter theory: main theoretical approach to disordered electronic systems [Efetov'96]
 - (iii) High Energy Theory: AdS/CFT correspondence, e.g., complement existing techniques [Minahan, Zarembo '02; Gromov, Kazakov, Leurent, Volin'14]

Metric for the punctured sphere

Flat metric

$$(\mathrm{d} s)^2 = |p(z)|\,\mathrm{d} z\mathrm{d} \bar{z}\,, \qquad p(z) = \rho^2\,\left(z-z_1\right)^{a_1-2}\left(z-z_2\right)^{a_2-2}\!(z-z_3)^{a_3-2}$$

 $z=z_{j}$: conical singularities with angle deficit $0<\left(2-a_{j}
ight)\pi<2\pi$

• If $a_1 + a_2 + a_3 = 2$ then $p(z)(dz)^2$ is quadratic differential under Möbius transformations

Constant mean curvature embedding into AdS_3

Embedding problem leads to Modified sinh-Gordon equation (MshG) [Pohlmeyer'76; Bobenko'91; de Vega and Sanchez'93; Alday, Maldacena'09; Dorey, Dunning, Negro, Tateo'20]

$$\partial_z \partial_{\bar{z}} \eta - e^{2\eta} + |p(z)|^2 e^{-2\eta} = 0$$

for induced metric $\propto e^{2\eta} dz d\bar{z}$

Sinh-Gordon equation

$$\partial_z \partial_{\bar{z}} \eta - \mathrm{e}^{2\eta} + |p(z)|^2 \, \mathrm{e}^{-2\eta} = 0 \,,$$

Redefine

$$\hat{\eta} = \eta - \frac{1}{2} \log |p(z)|$$

Apply Schwarz-Christoffel map

$$z \to w$$
 with $w = \int dz \sqrt{\rho(z)}$

PDE becomes ordinary sinh-Gordon equation

$$\partial_w \partial_{\bar{w}} \hat{\eta} = 2 \sinh(\hat{\eta})$$

but on different domain

Domain

- (I) Compact case:

$$0 < a_1, a_2, a_3 < 2$$

- (II) Non-compact case:

$$0 < a_1, a_2 \text{ and } a_3 < 0$$

Formulation of the problem

$$\partial_z \partial_{\bar{z}} \eta = e^{2\eta} - |p(z)|^2 e^{-2\eta}, \qquad p(z) = \rho^2 \prod_{j=1}^3 (z - z_j)^{a_j - 2}$$

Supplement with:

(I) Compact case:
$$0 < a_1, a_2, a_3 \le 2$$

$$\eta = 2m_j \log |z - z_j| + O(1)$$
as
 $z \to z_j$
 $(j = 1, 2, 3)$
 $\eta = -2 \log |z| + O(1)$
as
 $z \to \infty$

$$m_j$$
 real such that $m_j \in \left(-\frac{1}{2}, -\frac{1}{4}(2-a_j)\right]$

(II) Non-compact case: $a_1, a_2 > 0$ and $a_3 < 0$

Send $z_3 \to \infty$ and specify:

$$\eta = 2m_j \log |z - z_j| + O(1)$$
 as $z \to z_j$ $(j = 1, 2)$

$$\eta = \frac{1}{2} \log |p(z)| + o(1)$$
 as $z \to \infty$

(Regularized) surface area

All geometric properties of embedding can be computed from η , e.g.,

Surface area of embedded surface

$$ext{Vol} = \int_{\Sigma} \mathsf{d}^2 z \, \sqrt{-\det g} \propto \int_{\Sigma} \mathsf{d}^2 z \, \mathsf{e}^{2\eta} = \int_{\Sigma} \mathsf{d}^2 z \, |p(z)|^2 \mathsf{e}^{-2\eta} - \pi \, (1 + m_1 + m_2 + m_3)$$

(!!!)
$$e^{2\eta} = |p(z)|(1+o(1)) \sim |z|^{-2-a_3}$$
 as $z \to \infty$

 \implies For non-compact case Vol diverges with $a_3 < 0$

Solution: define *regularized volume* by subtracting |p(z)| from integrand

$$\mathfrak{F} = -\frac{2}{\pi} \int d^2 z \, \left(e^{\eta} - \sqrt{|p(z)|} \, e^{-\eta} \right)^2 + \text{constant}$$

'constant' fixed by some renormalization condition

G. Kotousov (LUH)

Numerical solution (focus on compact case)

$$\underbrace{\partial_z \partial_{\bar{z}} \eta}_{\text{Laplacian}} = \mathrm{e}^{2\eta} - |p(z)|^2 \, \mathrm{e}^{-2\eta} \qquad \sim \qquad \text{Poisson's equation}$$

Green's function for 2D Laplacian:

$$G(z,z') = rac{2}{\pi} \log |z-z'|, \qquad \qquad \partial_z \partial_{\bar{z}} G(z,z') = \delta(z-z')$$

one can re-write differential equation as non-linear integral equation:

$$\eta(z) = \int_{\Sigma} d^2 z \, G(z - z') \left[e^{2\eta(z')} - |p(z')|^2 e^{-2\eta(z')} \right] + \frac{1}{\eta_{\infty}} + \sum_{j=1}^{3} 2m_j \, \log|z - z_j|$$

- \bullet Σ thrice punctured Riemann sphere
- ullet η_{∞} constant in subleading asymptotics

$$\eta(z) = -2\log|z| + \eta_{\infty} + o(1)$$
 as $z \to \infty$

Numerical solution

Define $\psi(z) = \eta(z) - \eta_{\infty}$ and re-write PDE:

$$\partial_z \partial_{\bar{z}} \psi(z) = e^{2\psi(z) + \frac{2\eta_{\infty}}{2\eta_{\infty}}} - |p(z)|^2 e^{-2\eta - \frac{2\eta_{\infty}}{2\eta_{\infty}}}$$

To determine η_{∞} integrate both sides over punctured sphere

$$\underbrace{\int_{\Sigma} d^2 z \, \partial_z \partial_{\bar{z}} \, \psi}_{=-\pi(1+m_1+m_2+m_3) \equiv A} = e^{2\eta_{\infty}} \underbrace{\int_{\Sigma} d^2 z \, e^{2\psi(z)}}_{\equiv B} - e^{-2\eta_{\infty}} \underbrace{\int_{\Sigma} d^2 z |p(z')|^2 \, e^{-2\psi(z')}}_{\equiv C}$$

 \implies quadratic equation for $e^{2\eta_{\infty}}$

Solve and choose positive real root:

$$\eta_{\infty} = rac{1}{2} \log \left(rac{A + \sqrt{A^2 + 4BC}}{2B}
ight) \, .$$

On this basis develop iteration procedure to solve non-linear integral eqs

12 / 22

Domain for numerical integration: $\Sigma \mapsto \Sigma_{\epsilon,z_{\max}}$

Domain for numerical integration

$$\int_{\Sigma_{\epsilon,R}} f(x) = \frac{1}{3} \sum_{\text{triangles}} \text{Area} \left(j^{\text{th}} \text{ triangle} \right) \times \left[f(v_{j,1}) + f(v_{j,2}) + f(v_{j,3}) \right]$$

 $v_{j,1} = \text{vertex of triangle } j$

Triangulation done by GMSH finite mesh generator [Geuzaine, Remacle'09]

G. Kotousov (LUH)

Adaptive meshing

At $n^{\rm th}$ step refine mesh based on growth of function:

Solution for compact case

G. Kotousov (LUH)

Solution for non-compact case

$$z = x + iy$$
, $a_1 = 1.7$, $a_2 = 1.5$, $m_1 = -0.3$, $m_2 = -0.25$

(2000 CPU hours total)

Up till now:

Constant mean curvature embedding problem

Next:

The Fateev model

The Fateev model [Fateev'95]

Integrable affine Toda type theory in 1+1D with 3 bosonic fields

$$\mathcal{L} = \frac{1}{16\pi} \sum_{j=1}^{3} \partial_{\mu} \varphi_{j} \, \partial^{\mu} \varphi_{j} + 2\mu \left(\mathrm{e}^{\mathrm{i}\alpha_{3}\varphi_{3}} \, \cos(\alpha_{1}\varphi_{1} + \alpha_{2}\varphi_{2}) + \mathrm{e}^{-\mathrm{i}\alpha_{3}\varphi_{3}} \, \cos(\alpha_{1}\varphi_{1} - \alpha_{2}\varphi_{2}) \right)$$

 μ – mass, α_i – couplings

 $\alpha_1^2 + \alpha_2^2 + \alpha_3^2 = \frac{1}{2}$: infinite number of conservation laws labeled by Lorentz spin

$$\partial_{-}T_{2n} = \partial_{+}\Theta_{2n-2},$$
 $\partial_{+}T_{-2n} = \partial_{-}\Theta_{2-2n},$ $\left(\partial_{\pm} = \frac{1}{2}\left(\partial_{t} \pm \partial_{x}\right)\right)$

Finite volume $x \sim x + R$ (spacetime cylinder)

$$\mathbb{I}_{2n-1} = \int_0^R dx \left(T_{2n} - \Theta_{2n-2} \right), \qquad \qquad \overline{\mathbb{I}}_{2n-1} = \int_0^R dx \left(T_{-2n} - \Theta_{2-2n} \right)$$

IMs conserved and commute with each other

$$[\mathbb{I}_{2n-1}, \mathbb{I}_{2m-1}] = [\overline{\mathbb{I}}_{2n-1}, \mathbb{I}_{2m-1}] = [\overline{\mathbb{I}}_{2n-1}, \overline{\mathbb{I}}_{2m-1}] = 0$$

G. Kotousov (LUH) ODE/IQFT for Fateev model 15

Regimes

• Compact case: $\alpha_i \in \mathbb{R}$

Periodic potential

$$=2\mu\left(\mathrm{e}^{\mathrm{i}\alpha_3\varphi_3}\,\cos(\alpha_1\varphi_1+\alpha_2\varphi_2)+\mathrm{e}^{-\mathrm{i}\alpha_3\varphi_3}\,\cos(\alpha_1\varphi_1-\alpha_2\varphi_2)\right)$$

Space of states splits onto twisted sectors labeled by quasi-momenta:

$$\varphi_j \mapsto \varphi_j + 2\pi/\alpha_j : \quad \Psi_{\mathbf{k}}[\varphi_1, \varphi_2, \varphi_3] \mapsto e^{2\pi i k_j} \Psi_{\mathbf{k}}[\varphi_1, \varphi_2, \varphi_3].$$

with $|k_j| < \frac{1}{2}$.

Fields φ_i taken to belong to compact segment $[0, 2\pi)$.

• Non-compact case: $\alpha_1, \alpha_2 \in \mathbb{R}$ and $\alpha_3 = \mathrm{i} b$ pure imaginary

Model can be reformulated as a 1+1 dimensional sigma model with target space two parameter deformation of \mathbb{S}^3

Non linear sigma model

$$\mathcal{L} = G_{ab}(X) \, \partial_{\mu} X^{a} \partial^{\mu} X^{b}$$

 $X^a = X^a(t,x)$ – coordinates on \mathbb{S}^3

 G_{ab} – asymetric 2 parameter deformation of three sphere metric

Special cases:

• 2D Sausage (deformed O(3) model) [Fateev,Onofri,Zamolodchikov'93]

Target space:

ullet Anisotropic $\mathrm{SU}(2)$ principal chiral field (squashed sphere or def. $\mathrm{O}(4)$ model) Target space:

• Quantum problem: computation of vacuum energy in twisted sectors

$$\mathbb{H}\ket{\mathit{vac}_{\mathbf{k}}} = \mathit{E}_{\mathbf{k}}^{(\mathrm{vac})}(\mu, R)\ket{\mathit{vac}_{\mathbf{k}}}$$

R - compactification radius

 $E_{\mathbf{k}}^{(\mathrm{vac})} = \frac{1}{R} \times$ function of dimensionless combination (μR)

Classical problem: Area of embedded surface in AdS₃

$$\mathfrak{F} = -rac{2}{\pi} \int d^2 z \, \left(\mathrm{e}^{\eta} - \sqrt{|p(z)|} \, \mathrm{e}^{-\eta}
ight)^2 + \sum_{j=1}^3 2 \left(m_j + rac{1}{2} \right) - rac{a_j}{2}$$

Renormalization condition $\lim_{
ho \to \infty} \mathfrak{F} = 0$

Quantum/classical cor. [Bazhanov, GK, Lukyanov '13;'14]

• Quantum/classical correspondence:

$$\frac{R}{\pi} E_{\mathbf{k}}^{(\mathrm{vac})} = \mathfrak{F} - 4\rho^2 \prod_{j=1}^{3} \frac{\Gamma(a_j/2)}{\Gamma(1 - a_j/2)}$$

Identification of parameters:

$$ho = \mu R, \qquad \qquad a_j = 4\alpha_j^2, \qquad \qquad |k_j| = \frac{2}{a_j} (m_j + \frac{1}{2})$$

- Non-compact case:

$$a_1, a_2 > 0$$
, $a_3 < 0 \iff \alpha_1, \alpha_2$ real and α_3 pure imaginary

Solution to PDE has two punctures in finite plane $\eta \sim 2m_j \log |z - z_j| \iff$ Twisted sectors labeled by two quasi-momenta $\mathbf{k} = (k_1, k_2)$

18 / 22

Checks

 $E_{\mathbf{k}}^{(\text{vac})}$ may be computed in two important limits:

- IR: Lüscher corrections [Lüscher '86] coming from exact S-matrix
- UV: conformal perturbation theory
- Special cases with $\mathbf{k} = 0$:
 - $4\alpha_1^2, 4\alpha_2^2=2,3,\ldots$ (more generally rational) TBA derived in <code>[Fateev'96]</code>
 - Any $\alpha_1^2,\alpha_2^2 \ge 0$ NLIE obtained in [Hegedus'03] along lines of [Klumper, Batchelor, Pearce '91; Destri, de Vega '95]
 - O(4) model studied in [Balog, Hegedus '04; Gromov, Kazakov, Viera '09; Caetano '10]

Results $(a_1 = 1.7, a_2 = 1.5, k_1 = \frac{4}{17} = 0.235..., k_2 = \frac{1}{3})$

Future directions – excited states

Zero-curvature representation for the Modified sinh-Gordon equation:

$$\partial_z \partial_{\bar{z}} \eta - e^{2\eta} + |\textbf{\textit{p}}(\textbf{\textit{z}})|^2 \, e^{-2\eta} = 0 \qquad \iff \qquad \left[\partial_z - \textbf{\textit{A}}_{\textbf{\textit{z}}} \{\eta\} \, , \, \partial_{\bar{z}} - \textbf{\textit{A}}_{\bar{z}} \{\eta\} \right] = 0$$

Find all η such that monodromy properties of linear system are unchanged

Apart from $\eta \propto \log |z - z_i|$ at $z = z_i$, additional "vortex" singularities allowed:

$$\eta = \log\left(\frac{z-x_a}{\bar{z}-\bar{x}_a}\right) + O(1), \qquad \qquad \eta = \log\left(\frac{\bar{z}-\bar{y}_b}{z-y_b}\right) + O(1)$$

where $\{x_1,\ldots,x_L\}$, $\{y_1,\ldots,y_{\overline{L}}\}$ obey (transcendental) system with discrete solution set

Correspondence

states
$$|\mathbf{v}\rangle \leftrightarrow \eta^{(\mathbf{v})}$$
 such that $\frac{R}{\pi} E_{\mathbf{k}}^{(\mathbf{v})} = \mathfrak{F}\{\eta\} + \dots$

Conclusion

In this talk:

- \bullet Minimal surface embedding problem $\Sigma \mapsto \mathrm{AdS}_3$
- Modified sinh-Gordon equation and its numerical solution
- ullet (Regularized) area of embedded surface \leftrightarrow vacuum energy of Fateev model

Future directions:

- \bullet Excited states: classification of all solutions η subject to certain 'monodromy free' condition
- Geometric interpretation
- Problem may be studied in context of ODE/IQFT correspondence for sinh-Gordon QFT using excited states TBA derived in [Teschner'07]