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the symmetry of the string path integral. Remarkably, conformal fishnet integrals do have

holographic interpretation in case of periodic boundary conditions [8–12]. In particular,

large periodic fishnets can be interpreted as world sheets embedded in the AdS space [8].

It is still an open question whether a holographic interpretation exists also for large

fishnets with open boundaries. The open fishnets possess nice integrability properties

including Yangian symmetry, reviewed in [7], but for the moment it is not clear how to

use them to explore their continuum limit in general. Recently, a first step towards a

holographic description was made in the paper [13] in which the continuum limit was

found for the simplest fishnets with open boundaries introduced previously by Basso and

Dixon [14]. These correspond to the four-point correlators

Gm,n(x1, x2, x3, x4) = hTr{�n
2 (x1)�

m
1 (x2)�

†n
2 (x3)�

†m
1 (x4)}i , (1.1)

in a theory of two Nc ⇥ Nc complex matrix fields �1 and �2 with chiral quartic interaction

⇠ g2Tr[�1�2�
†
1�

†
2]. The perturbative series for the correlator Gm,n consists of a single

Feynman graph representing regular square lattices of size m ⇥ n with the external legs on

each side attached to four distinct points in the Minkowski space. The four operators can

be can be thought of as four di↵erent boundary conditions associated with the four edges

of the rectangle.

Up to a standard factor, Gm,n depends on the positions of the operators through the

two conformal cross ratios,

Gm,n(x1, x2, x3, x4) =
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4.4 Fishnets

In [12], the octagon was expanded in a basis of minors of the in the minors of the semi-infinite matrix

f =

0

������@

f1 f2 f3 f4 f5 .
f2 f3 f4 f5 f6 .
f3 f4 f5 f6 f7 .
f4 f5 f6 f7 f8 .
f5 f6 f7 f8 f9 .
. . . . . .

1

������A
(18)

In particular, for ` = 0, the lowest loop order n-particle contribution is proportional to the determinant
of the matrix (18) restricted to the first n rows and columns, which has been identified in [16] with the
Feynman integral for an n ⇥ n fishnet diagram,

O�=0 =
�X

n=0

X n g2n2 �
[fish]n,n + o(g2)

�
. (19)

For ` > 0, the lowest term is identified as a rectangular n ⇥ (n + `) fishnet Feynman diagram,

O� =
�X

n=0

X n g2n(n+�)
�
[fish]n,n+� + o(g2)

�
, (20)

The n ⇥ (n + m) rectangular fishnet graph is expressed as a diagonal minor of the determinant (18) [16]

[fish]n,n+m =
det

⇣
[fi+j+1+m]i,j=0,...,n�1

⌘

Qn�1
i=0 (2i + m)!(2i + m + 1)!

. (21)

This property of the octagon is obvious from the representation (15), which can be written as a sum over
minors of the matrix R, eq. (16),

O� =
�X

N=0

XN

X

0�i1<...<iN
0�j1<...<jN

det

✓h
R[�]

i�j�

i

�,�=1,...,N

◆

=
�X

N=0

XN

⇣
det R[�]

N�N
+ o(g2)

⌘
.

(22)

Indeed, to the lowest order the determinant of the matrix R[�]
N�N

is given by the fishnet integral normalised
as in (21),

det R[�]
N�N = [fish]N,N+� g2N(N+�) + o(g2N(N+�)+2). (23)

5 Strong coupling limit

The strong coupling limit corresponds to the semiclassical limit of the system of fermions and the free
energy is given by an integral over the Fermi sea. First let us note that the pole of the fermionic correlator
C(x, y) is at xy = 1. It is more natural to replace the correlator by

C(x, y) =
1

x�y�

x � y

xy � 1
! C(x, 1/y) =

y�

x�

xy � 1

x � y
(1)

x1

x2

x3

x4

The octagon - weak coupling

=
g2mn

(x2
13)

n(x2
24)

m
⇥ IBD

m,n(z, z̄) , (1.2)

where x2
ij = (xi � xj)2 and z, z̄ are defined by

u =
x2
12x

2
34

x2
13x

2
24

=
zz̄

(1 � z)(1 � z̄)
, v =

x2
14x

2
23

x2
13x

2
24

=
1

(1 � z)(1 � z̄)
. (1.3)

A canonical choice for the positions of the four operators is

x1 = (0, 0), x2 = (z, z̄), x3 = (1, 1), x4 = (1, 1). (1.4)

It is convenient to use (for Minkowski kinematics) the exponential parametrisation

z = �e���' , z̄ = �e��+' . (1.5)

The Euclidean kinematics is described by the analytic continuation of ' to the imaginary

axis such that z̄ = z⇤. Due to the symmetries z $ z̄ and z $ 1/z̄ one can consider only

the fundamental domain zz̄  1, z̄  1, or equivalently � > 0 and ' > 0. Basso and Dixon

[14] obtained, using the integrability properties inherited from N = 4 SYM, two di↵erent

integral representations for Gm,n which they named BMN (Berenstain-Maldacena-Nastase

– 2 –
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Basso-Dixon integral for rectangular fishnets

Fishnet Feynman graphs in 4d, or 
“fishnets”, are integrable [Alexander Zamolodchikov 1980, 


Gürdogan-Kazakov 2015, 


Basso, Caetano, Derkachov, Dixon, Fleury, 
Gromov, Kazakov, Korchemsky, Negro, Olivucci, 
Preti, Sever, Sizov, Zhong, …]

Gm,n(x1, x2, x3, x4) = ⟨Tr{ϕ2(x1)nϕ1(x2)mϕ†
2 (x3)nϕ†

1 (x4)m}⟩

Rectangular fishnets - particular case of open fishnets,

special 4-point correlators in the fishnet CFT:

computed by Basso and 
Dixon from integrability 
[B. Basso, L. Dixon 1705.03545]

Fishnet QFT: - 4d planar massless QFT of two complex matrix fields  
with non-unitary interaction 

ϕ1(x), ϕ2(x)
Tr{ϕ1(x)ϕ2(x)ϕ†

1 (x3)ϕ†
2 (x4)}

∙

= single planar graph
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Basso-Dixon integral for rectangular fishnets

x2

x4

x1 x3

x2 x2 x2 x2

∙ ∙ ∙ ∙ ∙
∙∙∙∙∙

∙ ∙ ∙ ∙ ∙
∙ ∙ ∙∙∙x1

x1

x1

x4 x4 x4 x4

x3

x3

x3

Can be viewed as a lattice model defined on a 
rectangle with four different Dirichlet b.c. on the edges

- Fluctuation variable , 

- nearest-neighbour interaction 

x ∈ ℝ4

|x − y |−2

∙ ∙

Gm,n(x1, x2, x3, x4) = ∫ℝ4
∏

r∙∈bulk

d4x(r) ∏
r∙−−−∙r′￼

1
|x(r) − x(r′￼) |2

Continuum limit, if exists, is different from that for cylindrical fishnets 
[Basso-Zhong, Gromov-Sever]

Exactly solvable open spin chain with  symmetry 

[Derkachov-Olivucci, 2020], using the techniques in [Derkachov-Korchemsky-Manashov,2001].

SO(1,5)
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Gm,n(x1, x2, x3, x4) = ⟨Tr{ϕn
2(x1)ϕm

1 (x2)ϕ†n
2 (x3)ϕ†m

1 (x4)}⟩

Parametrisation by hyperbolic angles:    z = − e−σ−φ , z̄ = − e−σ+φ

(in Minkowski kinematics )σ, φ ∈ ℝ

U =
x2

12x2
34

x2
13x2

24
=

zz̄
(1 − z)(1 − z̄)

, V =
x2

14x2
23

x2
13x2

24
=

1
(1 − z)(1 − z̄)

By the conformal invariance, the correlator depends, up to a standard factor, on the 
positions  through the two  conformal invariant cross ratios (cf Volker’s talk)x1, x2, x3, x4

By conformal transformation x1 = (0,0), x2 = (z, z̄), x3 = (∞, ∞), x4 = (1,1)

Gm,n(x1, x2, x3, x4) =
g2mn

(x2
13)n(x2

24)m
× IBD

m,n(z, z̄)

Basso-Dixon integral

is a correlation function of spinless fields with dimensions  Δ2 = Δ4 = m, Δ1 = Δ3 = n

Conformal symmetry
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IBD
m,n(z, z̄) = (2 cosh σ + 2 cosh φ)m

∞

∑
a1,...,am=1

m

∏
j=1

sinh(aiφ)
sinh φ

(−1)aj−1 ∫
m

∏
j=1

duj

2π
e2iσuj

×
∏m

i=1 ai∏i<j [(ui − uj)2 +
(ai + aj)2

4 ] [(ui − uj)2 +
(ai − aj)2

4 ]
(u2

j +
a2

j

4 )
m+n

“BMN integral representation”

  

Conjectured in [Basso-Dixon, 2017], proved in [Derkachov-Olivucci, 2020]

“Dual integral representation” [Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021]

IBD
m,n(z, z̄) =

1
𝒩

1
m! ∫

∞

|σ|

m

∏
j=1

dtj t(n−m)2−σ2

j
cosh σ + cosh φ
cosh tj + cosh φ

m

∏
j,k=1

(tj + tk)
m

∏
j<k

(tj − tk)2

By Fourier transformation   , the discrete sum can be done explicitlyu → i∂/∂t, ∂/∂u → − it

— Generalises the integral for the ladder diagrams ( ) m = 1 Broadhurst-Davydychev, 2010
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Determinant representation (ladders glued into a fishnet) B. Basso, L. Dixon 1705.03545,

IBD
m,m+ℓ =

1
𝒩

det ([fj+k+ℓ−1]j,k=1,...,m)
x2

x4

x1 x3

x2 x2 x2 x2

∙ ∙ ∙ ∙ ∙
∙∙∙∙∙

∙ ∙ ∙ ∙ ∙
∙ ∙ ∙∙∙x1

x1

x1

x4 x4 x4 x4

x3

x3

x3

x1 x3∙ ∙ ∙ ∙ ∙
x2

x4

x2

x4

x2

x4

x2

x4

x2

x4

k

k-ladder diagram

O(-2) matrix model:  The B-D integral takes the form of the partition function of a 
certain  matrix model studied in the past:m × m

IBD
m,n = 𝒵m(ℓ, σ, φ), ℓ ≡ n − m - “bridge”

𝒵m(ℓ, σ, φ) =
1
𝒩

1
m! ∫

∞

|σ|

m

∏
j=1

dtj e−V(tj)
m

∏
j,k=1

(tj + tk)
m

∏
j<k

(tj − tk)2

V(t) = log
cosh t + cosh φ
cosh σ + cosh φ

− ℓ log(t2 − σ2)

fk(z, z̄) = ∫
∞

|σ|

cosh σ + cosh φ
cosh t + cosh φ

(t2 − σ2)n−1 2tdt

 unusual confining potential: 

—  grows slowly (linearly) at ;

—   has an infinite array of simple 
poles on the imaginary axis.

∙
t → ± ∞

V′￼(t)
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Thermodynamical limit  ( )m → ∞
 In the thermodynamical limit the “free energy”   grows as the “area” 

. 


In the “bulk” thermodynamical limit,   with fixed hyperbolic angles   and  , 
the free-energy density  depends only on the aspect ratio  and not 
on the “boundary conditions” determined by   and .

∙ ℱ = log IBD
m,n

mn = m(m + ℓ)

m, n → ∞ σ φ
ℱ̂ = ℱ/(mn) m /n

σ φ
[Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021]

 In the scaling limit  with  finite, the saddle-point equation for 
the spectral density is equivalent to the Bethe equations for the Frolov-Tseytlin 
folded string rotating in  with 

∙ m, σ → ∞ ̂σ ∼ σ/m

AdS3 × S1 {S, J} = {2m, ℓ}
[Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021]

 I will consider the double scaling limit  with ,  
finite. The interpretation in terms of Bethe equations still exists, but with unphysical 
choice of the mode numbers. 

∙ m, σ, φ → ∞ ̂σ ∼ σ/m φ̂ ∼ φ/m

THIS TALK:
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V′￼(t) →
t→∞

sgn(t) θ ( | t | − |φ |) ⇒ e2πiV′￼(t) → 1

At large argument, the derivative of the potential is approximated by a piecewise linear 
function:

(
tj − σ2/tj + iπ
tj − σ2/tj − iπ )

ℓ 2m

∏
k≠j

tj − tk + 2πi
tj − tk − 2πi

= 1, ( j = 1,...,2m)

Hence the saddle-point equations are equivalent modulo Bethe numbers to the 
BAE for а symmetric configuration of   magnons in a  closed spin 
chain of length 

2m XXX−1/2
J = ℓ

Saddle-point equations

The logarithmic form of the BAE is

2ℓ tj
t2
j − σ2

+
m

∑
k≠j

2
tj − tk

+
m

∑
k=1

2
tj + tk

= nj ( j = 1,...,m) {tj} = {−tj}

Bethe numbers nj = − n2m−j+1

The BAE depend on the angle  only through the Bethe numbers.φ
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2ℓ tj
t2
j − σ2

+
m

∑
k≠j

2
tj − tk

+
m

∑
k=1

2
tj + tk

= nj ( j = 1,...,m) {tj} = {−tj}

Not a finite-gap solution: the two groups of roots 
(with mode numbers 1 and 0 respectively) do not 
repel but attract. Logarithmic cusp of the spectral 
density observed at the collision point.  

Two choices for the Bethe numbers

Regime I.   If , then   |φ | ≤ |σ | nj = sign(tj), j = 1,...,2m

For large number of magnons this is the finite-zone 
solution for the the Frolov-Tseytlin folded string rotating 
in  with  AdS3 × S1 {S, J} = {2m, ℓ}

Figure 4. Profile of the spectral density ⇢(t) in regime II.

Figure 5. Profile of the spectral density when b = |'| (left) and for a ! |'| (right).

Eq. (4.30) can be used to generate series expansions of the free energy in di↵erent

limits of regime II, as the bulk thermodynmical limit and the double light-cone limit, but

this task is beyond the scope of this paper. Below I will only check that the limit �/m � 1

of (4.30) along the line � = 0 indeed reproduces the large m asymptotics of the expression

(2.9) for the double light-like limit.

• Double light-cone limit � = 0,' � m

If ' � m, then the right branch point is pushed far as well, a � m. The left branch

point can be anywhere depending on the value of `. The two conditions (4.26)-(4.27) are

compatible with  ⌧ 1. Retaining only the leading linear order in the expansion of the

elliptic integrals in  , they read

⇡
`

a
=

p
1 � k2  , ⇡

2m + `

a
=  ,

'

a
=

p
1 � k2 2, (4.31)

with solution to the leading order at  ⌧ 1

 ! ⇡(2m + `)

'
, k !

2
p

m(m + `)

2m + `
,

a = '+
2⇡2m(m + `)

'
, b =

' `

2m + `
.

(4.32)

At m ! 0, a = ' is the position of the minimum of the external potential. With the

condition Fm!0 = 0, the derivative of the free energy can be integrated to

F = 2m(m + `) log'+ 3m(m + `)

+ m2 log(m) + (m + `)2 log(m + `) � (2m + `)2 log(2m + `)

= 2mn log(') + 3mn + m2 log(m) + n2 log(n) � (m + n)2 log(m + n).

(4.33)

This expression matches the large-m asymptotics of (2.9).

– 17 –

t

ρ(t)

[Basso et al, 2021]

n = 1n = − 1

 Note that these fictive magnons have nothing to do with the original mirror magnons.  ∙

Regime II.   If , then  if  
and  if ,  .   

|φ | > |σ | nj = sign(tj) | tj | > |φ |
nj = 0 | tj | < |φ | j = 1,...,2m

t

ρ(t)

Figure 4. Profile of the spectral density ⇢(t) in regime II.

Figure 5. Profile of the spectral density when b = |'| (left) and for a ! |'| (right).

Eq. (4.30) can be used to generate series expansions of the free energy in di↵erent

limits of regime II, as the bulk thermodynmical limit and the double light-cone limit, but

this task is beyond the scope of this paper. Below I will only check that the limit �/m � 1

of (4.30) along the line � = 0 indeed reproduces the large m asymptotics of the expression

(2.9) for the double light-like limit.

• Double light-cone limit � = 0,' � m

If ' � m, then the right branch point is pushed far as well, a � m. The left branch

point can be anywhere depending on the value of `. The two conditions (4.26)-(4.27) are

compatible with  ⌧ 1. Retaining only the leading linear order in the expansion of the

elliptic integrals in  , they read

⇡
`

a
=

p
1 � k2  , ⇡

2m + `

a
=  ,

'

a
=

p
1 � k2 2, (4.31)

with solution to the leading order at  ⌧ 1

 ! ⇡(2m + `)

'
, k !

2
p

m(m + `)

2m + `
,

a = '+
2⇡2m(m + `)

'
, b =

' `

2m + `
.

(4.32)

At m ! 0, a = ' is the position of the minimum of the external potential. With the

condition Fm!0 = 0, the derivative of the free energy can be integrated to

F = 2m(m + `) log'+ 3m(m + `)

+ m2 log(m) + (m + `)2 log(m + `) � (2m + `)2 log(2m + `)

= 2mn log(') + 3mn + m2 log(m) + n2 log(n) � (m + n)2 log(m + n).

(4.33)

This expression matches the large-m asymptotics of (2.9).

– 17 –

n = 1n = − 1 n = 0n = 0

φ
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Saddle-point solution in the double scaling limit (regime II)

ℓ, m, σ, φ → ∞ with ̂σ =
σ
m

, φ̂ =
φ
m

, ̂ℓ =
ℓ
m

 fixed

ℱ̂( ̂σ, φ̂, ̂ℓ) = Limm→∞
ℱm(ℓ, σ, φ)
m(m + ℓ)

“Free energy”  grows as “area”  ℱm(ℓ, σ, φ) ≡ log 𝒵m(ℓ, σ, φ) mn = m(m + ℓ)

— free energy per unit area (finite) 

∫
a

b

dt
y(t)

V′￼(t) = 0, ∫
a

b

dt
y(t)

t2V′￼(t) = 2πma
 support of density 

  
determined by

∙
[−a, − b] ∪ [b, a]

 saddle-point equations 
reformulated as a Riemann-
Hilbert problem for

∙

H(t) ≡ −
1
2

V′￼(t) + G(t) − G(−t) = − 2∫
a

b

dt1
2π

y(t)
y(t1)

tV′￼(t) − t1 V′￼(t1)
t2 − t2

1

a2y2 = (a2 − t2)(t2 − b2) = projection of the elliptic curve  y(t)

G(t) =
m

∑
k=1

1
t − tk

= ∫
a

b

dt′￼ρ(t′￼)
t − t′￼

 spectral density  
encoded in the resolvent
∙ ρ(t)

10
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Explicit expression of spectral density in regime II ℓ, σ, φ ∼ m, |φ | > |σ |

k2 = 1 −
b2

a2
, ψ = arcsin

a2 − φ2

a2 − b2
with

−a
t

ρ(t)

ab−b
Figure 4. Profile of the spectral density ⇢(t) in regime II.

Figure 5. Profile of the spectral density when b = |')| (left) and for a ! |'| (right).

Eq. (4.30) can be used to generate series expansions of the free energy in di↵erent

limits of regime II, as the bulk thermodynmical limit and the double light-cone limit, but

this task is beyond the scope of this paper. Below I will only check that the limit �/m � 1

of (4.30) along the line � = 0 indeed reproduces the large m asymptotics of the expression

(2.9) for the double light-like limit.

• Double light-cone limit � = 0,' � m

If ' � m, then the right branch point is pushed far as well, a � m. The left branch

point can be anywhere depending on the value of `. The two conditions (4.26)-(4.27) are

compatible with  ⌧ 1. Retaining only the leading linear order in the expansion of the

elliptic integrals in  , they read

⇡
`

a
=

p
1 � k2  , ⇡

2m + `

a
=  ,

'

a
=

p
1 � k2 2, (4.31)

with solution to the leading order at  ⌧ 1

 ! ⇡(2m + `)

'
, k !

2
p

m(m + `)

2m + `
,

a = '+
2⇡2m(m + `)

'
, b =

' `

2m + `
.

(4.32)

At m ! 0, a = ' is the position of the minimum of the external potential. With the

condition Fm!0 = 0, the derivative of the free energy can be integrated to

F = 2m(m + `) log'+ 3m(m + `)

+ m2 log(m) + (m + `)2 log(m + `) � (2m + `)2 log(2m + `)

= 2mn log(') + 3mn + m2 log(m) + n2 log(n) � (m + n)2 log(m + n).

(4.33)

This expression matches the large-m asymptotics of (2.9).

– 17 –

F (ψ k2) (a2 − σ2) (b2 − σ2) = πℓa

a2E (ψ k2) − σ2F (ψ k2) = π(2m + ℓ)a
⇒ a, b}

ρ(t) =
1
π

ℓ t
t2 − σ2

(a2 − t2)(t2 − b2)
(a2 − σ2)(b2 − σ2)

+
1
π2

t
a

t2 − b2

a2 − t2
Π ( a2 − b2

a2 − t2
; ψ k2)

incomplete elliptic integral of third kindΠ(α2; ψ |k2) = ∫
ψ

0

dθ

(1 − α2 sin2 θ) 1 − k2 sin2 θ

F(ψ |k2) = ∫
ψ

0

dθ

1 − k2 sin2 θ
, E(ψ |k2) = ∫

ψ

0
dθ 1 − k2 sin2 θ incomplete elliptic integrals 

of first and second kind

∂mℱ = (2m + ℓ)log
(a2 − b2)

4(2m + ℓ)2
+

2φ
π

arctan
a2 − φ2

φ2 − b2
+ 2ℓ arctanh

b2 − σ2

a2 − σ2
−

2ℓ σ2

(a2 − σ2) (b2 − σ2)

 Free energy:∙

 Density:∙
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𝔼 = E(k2) = ∫
π/2

0
dθ 1 − k2 sin2 θ, 𝕂 = K(k2) = ∫

π/2

0

dθ

1 − k2 sin2 θ
,

k2 = 1 − (k′￼)2, k′￼=
b
a

Π(α2 |k2) = ∫
π/2

0

dθ

(1 − α2 sin2 θ) 1 − k2 sin2 θ

ρ(t) =
1
π

ℓ t
t2 − σ2

(a2 − t2)(t2 − b2)
(a2 − σ2)(b2 − σ2)

+
1
π2

t
a

t2 − b2

a2 − t2
Π ( a2 − b2

a2 − t2
1 −

b2

a2 )

−a

Figure 4. Profile of the spectral density ⇢(t) in regime II.

Figure 5. Profile of the spectral density when b = |'| (left) and for a ! |'| (right).

Eq. (4.30) can be used to generate series expansions of the free energy in di↵erent

limits of regime II, as the bulk thermodynmical limit and the double light-cone limit, but

this task is beyond the scope of this paper. Below I will only check that the limit �/m � 1

of (4.30) along the line � = 0 indeed reproduces the large m asymptotics of the expression

(2.9) for the double light-like limit.

• Double light-cone limit � = 0,' � m

If ' � m, then the right branch point is pushed far as well, a � m. The left branch

point can be anywhere depending on the value of `. The two conditions (4.26)-(4.27) are

compatible with  ⌧ 1. Retaining only the leading linear order in the expansion of the

elliptic integrals in  , they read

⇡
`

a
=

p
1 � k2  , ⇡

2m + `

a
=  ,

'

a
=

p
1 � k2 2, (4.31)

with solution to the leading order at  ⌧ 1

 ! ⇡(2m + `)

'
, k !

2
p

m(m + `)

2m + `
,

a = '+
2⇡2m(m + `)

'
, b =

' `

2m + `
.

(4.32)

At m ! 0, a = ' is the position of the minimum of the external potential. With the

condition Fm!0 = 0, the derivative of the free energy can be integrated to

F = 2m(m + `) log'+ 3m(m + `)

+ m2 log(m) + (m + `)2 log(m + `) � (2m + `)2 log(2m + `)

= 2mn log(') + 3mn + m2 log(m) + n2 log(n) � (m + n)2 log(m + n).

(4.33)

This expression matches the large-m asymptotics of (2.9).

– 17 –

t

ρ(t)

ab−b

— obtained by setting  in the solution in regime IIφ = b (ψ = π/2)

This is the density of the Bethe roots that correspond to the Frolov-Tseytlin folded string.
[Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021]

Explicit expression of spectral density in regime I 

(a2 − σ2)(b2 − σ2) 𝕂 = πℓ a

a2𝔼 − σ2𝕂 = π(2m + ℓ)a
⇒ a, b}

 Density:∙

 Free energy:∙
∂mℱ = (2m + ℓ)log

(a2 − b2)
4(2m + ℓ)2

+ 2ℓ arctanh
b2 − σ2

a2 − σ2
−

2ℓ σ2

(a2 − σ2) (b2 − σ2)
+ max( |φ | , |σ)
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Explicit solution for square fishnet  with (ℓ = 0) σ = 0 ⇔ x2
12x2

34 = x2
14x2

23

ρ(t) =
1

2π2
log

φ2 + 4π2m2 − t2 + 2πm

φ2 + 4π2m2 − t2 − 2πm

ℱ = m2 log ( φ2 + 4π2m2

16m2 ) −
φ2

4π2
log ( φ2 + 4π2m2

φ2 ) +
2φm

π
arccot ( φ

2πm )

b = 0, a = φ2 + 4π2m2

Figure 2. Profile of the spectral density for a large square fishnet with � = 0. The density is finite
at t = 0 and develops a cusp at t = '.

Figure 3. When ' ! 0, the cusp moves to the origin and the density becomes singular at t = 0
(left). When ' ! 1, the (right).

continued by symmetry to negative t has a profile shown in fig. 2. It exhibits a logarithmic

cusp localised at t = ' which is a consequence of the non-analyticity of the external

potential at this point at scale t ⇠ m. Near the cusp the density behaves as

⇢(t)sing ⇡ 1

2⇡2
log |t � '| + smooth function, 1 ⌧ |t � '| ⌧ m. (4.18)

In this simple case the expression for the derivative of the free energy

@mF = 2m log

✓
'2 + 4⇡2m2

16m2

◆
+

2'

⇡
arccot

⇣ '

2⇡m

⌘
� log(2⇡m) + O(1) (4.19)

can be integrated explicitly, with the integration constant fixed by the condition that the

free energy vanishes at m = 0,

F = m2 log

✓
'2 + 4⇡2m2

16m2

◆
� '2

4⇡2
log

✓
'2 + 4⇡2m2

'2

◆
+

2'm

⇡
arccot

⇣ '

2⇡m

⌘
. (4.20)

One can check that the ' � m asymptotics of (4.20) coincides with the large m

asymptotics of the solution in the double light-like limit (2.9) with u = v = e�|'|,

F = m2 log
'2

16m2
+ 3m2 +

2⇡2m4

3'2
+ O('�4). (4.21)

The solution (4.20) interpolates smoothly between the bulk thermodynamical limit (' ! 0)

and the double light-like limit (' ! 1) of the large square fishnet. The first term in the

small ' expansion

F = m2 log
⇡2

4
+ m' + (log

'2

4⇡2m2
� 3)

'2

4⇡2
+ O('4) (4.22)

– 15 –

|φ |− |φ | a−a 0

ρ(t)

t

 Density:∙

 Free energy:∙

φ → ∞
[Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021]
Bulk thermodynamical limit ”Double light-like limit”Figure 2. Profile of the spectral density for a large square fishnet with � = 0. The density is finite

at t = 0 and develops a cusp at t = '.

Figure 3. When ' ! 0, the cusp moves to the origin and the density becomes singular at t = 0
(left). When ' ! 1, the (right).

continued by symmetry to negative t has a profile shown in fig. 2. It exhibits a logarithmic

cusp localised at t = ' which is a consequence of the non-analyticity of the external

potential at this point at scale t ⇠ m. Near the cusp the density behaves as

⇢(t)sing ⇡ 1

2⇡2
log |t � '| + smooth function, 1 ⌧ |t � '| ⌧ m. (4.18)

In this simple case the expression for the derivative of the free energy

@mF = 2m log

✓
'2 + 4⇡2m2

16m2

◆
+

2'

⇡
arccot

⇣ '

2⇡m

⌘
� log(2⇡m) + O(1) (4.19)

can be integrated explicitly, with the integration constant fixed by the condition that the

free energy vanishes at m = 0,

F = m2 log

✓
'2 + 4⇡2m2

16m2

◆
� '2

4⇡2
log

✓
'2 + 4⇡2m2

'2

◆
+

2'm

⇡
arccot

⇣ '

2⇡m

⌘
. (4.20)

One can check that the ' � m asymptotics of (4.20) coincides with the large m

asymptotics of the solution in the double light-like limit (2.9) with u = v = e�|'|,

F = m2 log
'2

16m2
+ 3m2 +

2⇡2m4

3'2
+ O('�4). (4.21)

The solution (4.20) interpolates smoothly between the bulk thermodynamical limit (' ! 0)

and the double light-like limit (' ! 1) of the large square fishnet. The first term in the

small ' expansion

F = m2 log
⇡2

4
+ m' + (log

'2

4⇡2m2
� 3)

'2

4⇡2
+ O('4) (4.22)

– 15 –

φ → 0

 and special kinematics Δ1 = Δ2 = Δ3 = Δ4 = m x2
12x2

34 = x2
14x2

23
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Euclidean OPE and light-like limits

 Euclidean short-distance (OPE)  limit   ∙ ( ̂σ → ∞ with φ̂ fixed)
[Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021]

σ → ∞ ⇒ U → 0, V → 1

|x12 |2 , |x34 |2 ∼ U |x13 |2 (U → 0, V → 1)

i.e.    =>  OPE limit in the U-channel.x1 ∼ x2, x3 ∼ x4

 Double light-cone, or nul,  limit∙ (φ̂ → ∞ with ̂σ fixed)
φ → ∞ ⇒ U → 0, V → 0

x2
12, x2

34 ∼ U |x13 | |x24 | ; x2
14, x2

23 ∼ V |x13 | |x24 |

i.e.  Minkowski intervals  become simultaneously light-like x2
12, x2

23, x2
34, x2

41
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Exact solutions in the Euclidean OPE and in the double light-like limits

fk(z, z̄) →
φ≫k

2∫
φ

0
t2k−1dt =

φ2k

k
Ladders:

IBD
m,n →

φ2m(m+ℓ)

𝒩
× det [ 1

i + j − 1 + n − m ]
i, j=1,...,m

=
φ2mn

𝒩
× 𝒩 (Cm,n)2

= Cm,n (log
1
U )

mn

× Cm,n (log
1
V )

mn

 Double light-cone, or nul,  limit     (                                    ) :∙ φ̂ → ∞ with σ fixed

[Basso-Dixon-Kosower-
Krajenbrink-Zhong, 2021]

fk(z, z̄) → ∫
∞

0
(2 |σ | )k tk−1e−tdt = (2 |σ | )k (k − 1)!Ladders:

Cm,n =
G(m + 1)G(n + 1)

G(m + n + 1)
, G(m) = 1!2! . . . (m − 2)!

Barnes’ G-function

IBD
m,n →

(2 |σ | )mn

𝒩
det
j,k

[( j + k + ℓ − 2)!] = (log
1
U )

mn

Cm,n

 Euclidean short-distance limit∙ ( ̂σ → ∞ with φ̂ fixed) :
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 Euclidean short-distance limit∙ ( ̂σ → ∞ with φ̂ fixed) :
[Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021]

   asymptotics of exact solution in Euclidean OPE and double 
light-cone limits matches  and  limits of the saddle-point 
solution 

∙ m → ∞
̂σ → ∞ φ̂ → ∞

 Double light-cone, or nul,  limit     (                                    ) :∙ φ̂ → ∞ with σ fixed

2σ

2φ

ℱ = mn log(2σ) +
3
2

mn +
1
2

m2 log(m)

+
1
2

n2 log n −
1
2

(m + n)2log(m + n)

ℱ = 2mn log(φ) + 3mn + m2 log(m)
+n2 log(n) − (m + n)2log(m + n)

a ≈ φ, b ≈
n − m
n + m

φ

a ≈ σ + ( m + n)2, b ≈ σ + ( m − n)2

Comparison with the solution in the double scaling limit
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Summary

  The bulk 
thermodynamical 
limit , the 
Euclidean OPE limit 

 and the 
double light-cone 
limit  are 
analytically related. 

∙

̂σ = φ̂ = 0

̂σ → ∞

φ̂ → ∞

φ

σ

Eu
cl

id
ea

n 
sh

or
t d

is
ta

nc
e 

lim
it

regime II 

Bulk 
thermody
namical 

.
regime II 

regime I 
regime I 

Double light like limit 
Euclidean short distance lim

it

Double light like limit 
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 Curious factorisation observed in the light-cone limit where the result is a 
product of two factors associated with the direct and with the cross channels  
∙

 —  There is interpretation of the OPE limit in terms of 
hopping magnons (“stampedes”) [Olivucci-Vieira, 2022]. 

If it can be extended to the light-like limit, how the 
above factorisation appears? 


— Possible arctic curve phenomenon.

IBD
m,n = Cm,n (log

1
U )

mn

× Cm,n (log
1
V )

mn

  HOLOGRAPHIC DUAL OF OPEN FISHNETS?


Results compatible with existence of holographic dual.

 Saddle-point equations = Bethe equations for some magnons in t-space.


However, not clear how to interpret the “unphysical” mode numbers in 
regime II.


— Problem still open.

∙


