Light-cone and double-scaling limits of rectangular fishnets

Ivan Kostov, IPhT Saclay

arXiv:2211.15056

Integrability in Condensed Matter Physics and Quantum Field Theory
Diablerets, 3-12 February 2023

Basso-Dixon integral for rectangular fishnets

Fishnet Feynman graphs in 4d, or "fishnets", are integrable

[Alexander Zamolodchikov 1980, Gürdogan-Kazakov 2015,

Basso, Caetano, Derkachov, Dixon, Fleury, Gromov, Kazakov, Korchemsky, Negro, Olivucci, Preti, Sever, Sizov, Zhong, ...]

Fishnet QFT: - 4d planar massless QFT of two complex matrix fields $\phi_{1}(x), \phi_{2}(x)$ with non-unitary interaction $\operatorname{Tr}\left\{\phi_{1}(x) \phi_{2}(x) \phi_{1}^{\dagger}\left(x_{3}\right) \phi_{2}^{\dagger}\left(x_{4}\right)\right\}$

Rectangular fishnets - particular case of open fishnets, special 4-point correlators in the fishnet CFT:
$G_{m, n}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left\langle\operatorname{Tr}\left\{\phi_{2}\left(x_{1}\right)^{n} \phi_{1}\left(x_{2}\right)^{m} \phi_{2}^{\dagger}\left(x_{3}\right)^{n} \phi_{1}^{\dagger}\left(x_{4}\right)^{m}\right\}\right\rangle$ $=$ single planar graph
 computed by Basso and Dixon from integrability
[B. Basso, L. Dixon 1705.03545]

Basso-Dixon integral for rectangular fishnets

$$
G_{m, n}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\int_{\mathbb{R}^{4}} \prod_{r \bullet \in \mathrm{bulk}} d^{4} x(r) \prod_{r \bullet r^{\prime}} \frac{1}{\left|x(r)-x\left(r^{\prime}\right)\right|^{2}}
$$

Exactly solvable open spin chain with $S O(1,5)$ symmetry [Derkachov-Olivucci, 2020], using the techniques in [Derkachov-Korchemsky-Manashov,2001].

Continuum limit, if exists, is different from that for cylindrical fishnets [Basso-Zhong, Gromov-Sever]

Conformal symmetry

$$
G_{m, n}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left\langle\operatorname{Tr}\left\{\phi_{2}^{n}\left(x_{1}\right) \phi_{1}^{m}\left(x_{2}\right) \phi_{2}^{\dagger n}\left(x_{3}\right) \phi_{1}^{\dagger m}\left(x_{4}\right)\right\}\right\rangle
$$

is a correlation function of spinless fields with dimensions $\Delta_{2}=\Delta_{4}=m, \Delta_{1}=\Delta_{3}=n$
By the conformal invariance, the correlator depends, up to a standard factor, on the positions $x_{1}, x_{2}, x_{3}, x_{4}$ through the two conformal invariant cross ratios (cf Volker's talk)

$$
U=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}=\frac{z \bar{z}}{(1-z)(1-\bar{z})}, \quad V=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}=\frac{1}{(1-z)(1-\bar{z})}
$$

By conformal transformation $x_{1}=(0,0), x_{2}=(z, \bar{z}), x_{3}=(\infty, \infty), x_{4}=(1,1)$
Parametrisation by hyperbolic angles: $z=-e^{-\sigma-\varphi}, \quad \bar{z}=-e^{-\sigma+\varphi}$
(in Minkowski kinematics $\sigma, \varphi \in \mathbb{R}$)

$$
G_{m, n}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{g^{2 m n}}{\left(x_{13}^{2}\right)^{n}\left(x_{24}^{2}\right)^{m}} \times I_{m, n}^{\mathrm{BD}}(z, \bar{z})
$$

"BMN integral representation"

Conjectured in [Basso-Dixon, 2017], proved in [Derkachov-Olivucci, 2020]

$$
\begin{gathered}
\left.I_{m, n}^{\mathrm{BD}}(z, \bar{z})=(2 \cosh \sigma+2 \cosh \varphi)^{m} \sum_{a_{1}, \ldots, a_{m}=1}^{\infty} \prod_{j=1}^{m} \frac{\sinh \left(a_{i} \varphi\right)}{\sinh \varphi}(-1)^{a_{j}-1}\right] \prod_{j=1}^{m} \frac{d u_{j}}{2 \pi} e^{2 i \sigma u_{j}} \\
\times \frac{\prod_{i=1}^{m} a_{i} \prod_{i<j}\left[\left(u_{i}-u_{j}\right)^{2}+\frac{\left(a_{i}+a_{j}\right)^{2}}{4}\right]\left[\left(u_{i}-u_{j}\right)^{2}+\frac{\left(a_{i}-a_{j}\right)^{2}}{4}\right]}{\left(u_{j}^{2}+\frac{a_{j}^{2}}{4}\right)^{m+n}}
\end{gathered}
$$

"Dual integral representation" [Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021]

By Fourier transformation $u \rightarrow i \partial / \partial t, \partial / \partial u \rightarrow-i t$, the discrete sum can be done explicitly

$$
I_{m, n}^{\mathrm{BD}}(z, \bar{z})=\frac{1}{\mathcal{N}} \frac{1}{m!} \int_{|\sigma|}^{\infty} \prod_{j=1}^{m} d t_{j} t_{j}^{(n-m)^{2}-\sigma^{2}} \frac{\cosh \sigma+\cosh \varphi}{\cosh t_{j}+\cosh \varphi} \prod_{j, k=1}^{m}\left(t_{j}+t_{k}\right) \prod_{j<k}^{m}\left(t_{j}-t_{k}\right)^{2}
$$

- Generalises the integral for the ladder diagrams $(m=1) \quad$ Broadhurst-Davydychev, 2010

Determinant representation (ladders glued into a fishnet) B. Basso, L. Dixon 1705.03545,

$$
\begin{aligned}
& I_{m, m+\ell}^{\mathrm{BD}}=\frac{1}{\mathcal{N}} \operatorname{det}\left(\left[f_{j+k+\ell-1}\right]_{j, k=1, \ldots, m}\right) \\
& f_{k}(z, \bar{z})=\int_{|\sigma|}^{\infty} \frac{\cosh \sigma+\cosh \varphi}{\cosh t+\cosh \varphi}\left(t^{2}-\sigma^{2}\right)^{n-1} 2 t d t
\end{aligned}
$$

k-ladder diagram

O(-2) matrix model: The B-D integral takes the form of the partition function of a certain $m \times m$ matrix model studied in the past:

$$
I_{m, n}^{\mathrm{BD}}=\mathscr{Z}_{m}(\ell, \sigma, \varphi), \quad \ell \equiv n-m-\text { "bridge" }
$$

$$
\mathscr{Z}_{m}(\ell, \sigma, \varphi)=\frac{1}{\mathcal{N}} \frac{1}{m!} \int_{|\sigma|}^{\infty} \prod_{j=1}^{m} d t_{j} e^{-V\left(t_{j}\right)} \prod_{j, k=1}^{m}\left(t_{j}+t_{k}\right) \prod_{j<k}^{m}\left(t_{j}-t_{k}\right)^{2}
$$

$$
V(t)=\log \frac{\cosh t+\cosh \varphi}{\cosh \sigma+\cosh \varphi}-\ell \log \left(t^{2}-\sigma^{2}\right)
$$

- unusual confining potential:
- grows slowly (linearly) at $t \rightarrow \pm \infty$;
- $V^{\prime}(t)$ has an infinite array of simple poles on the imaginary axis.

Thermodynamical limit ($m \rightarrow \infty$)

- In the thermodynamical limit the "free energy" $\mathscr{F}=\log I_{m, n}^{\mathrm{BD}}$ grows as the "area" $m n=m(m+\ell)$.

In the "bulk" thermodynamical limit, $m, n \rightarrow \infty$ with fixed hyperbolic angles σ and φ, the free-energy density $\hat{\mathscr{F}}=\mathscr{F} /(m n)$ depends only on the aspect ratio m / n and not on the "boundary conditions" determined by σ and φ.
[Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021]

- In the scaling limit $m, \sigma \rightarrow \infty$ with $\hat{\sigma} \sim \sigma / m$ finite, the saddle-point equation for the spectral density is equivalent to the Bethe equations for the Frolov-Tseytlin folded string rotating in $\mathrm{AdS}_{3} \times S^{1}$ with $\{S, J\}=\{2 m, \ell\}$
[Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021]
THIS TALK:
- I will consider the double scaling limit $m, \sigma, \varphi \rightarrow \infty$ with $\hat{\sigma} \sim \sigma / m, \hat{\varphi} \sim \varphi / m$ finite. The interpretation in terms of Bethe equations still exists, but with unphysical choice of the mode numbers.

Saddle-point equations

At large argument, the derivative of the potential is approximated by a piecewise linear function:

$$
V^{\prime}(t) \underset{t \rightarrow \infty}{\rightarrow} \operatorname{sgn}(t) \theta(|t|-|\varphi|) \quad \Rightarrow \quad e^{2 \pi i V^{\prime}(t)} \rightarrow 1
$$

Hence the saddle-point equations are equivalent modulo Bethe numbers to the BAE for a symmetric configuration of $2 m$ magnons in aXXX $-1 / 2$ closed spin chain of length $J=\ell$

$$
\left(\frac{t_{j}-\sigma^{2} / t_{j}+i \pi}{t_{j}-\sigma^{2} / t_{j}-i \pi}\right)^{\ell} \prod_{k \neq j}^{2 m} \frac{t_{j}-t_{k}+2 \pi i}{t_{j}-t_{k}-2 \pi i}=1, \quad(j=1, \ldots, 2 m)
$$

The logarithmic form of the BAE is

$$
\begin{aligned}
\frac{2 \ell t_{j}}{t_{j}^{2}-\sigma^{2}}+\sum_{k \neq j}^{m} \frac{2}{t_{j}-t_{k}}+\sum_{k=1}^{m} \frac{2}{t_{j}+t_{k}}=n_{j} \quad(j=1, \ldots, m) \quad\left\{t_{j}\right\} & =\left\{-t_{j}\right\} \\
\text { Bethe numbers } n_{j} & =-n_{2 m-j+1}
\end{aligned}
$$

The BAE depend on the angle φ only through the Bethe numbers.

Two choices for the Bethe numbers

$$
\frac{2 \ell t_{j}}{t_{j}^{2}-\sigma^{2}}+\sum_{k \neq j}^{m} \frac{2}{t_{j}-t_{k}}+\sum_{k=1}^{m} \frac{2}{t_{j}+t_{k}}=n_{j} \quad(j=1, \ldots, m) \quad\left\{t_{j}\right\}=\left\{-t_{j}\right\}
$$

Regime I. If $|\varphi| \leq|\sigma|$, then $n_{j}=\operatorname{sign}\left(t_{j}\right), \quad j=1, \ldots, 2 m$
For large number of magnons this is the finite-zone solution for the the Frolov-Tseytlin folded string rotating in $\mathrm{AdS}_{3} \times S^{1}$ with $\{S, J\}=\{2 m, \ell\}$ [Basso et al, 2021]

Regime II. If $|\varphi|>|\sigma|$, then $n_{j}=\operatorname{sign}\left(t_{j}\right)$ if $\left|t_{j}\right|>|\varphi|$ and $n_{j}=0$ if $\left|t_{j}\right|<|\varphi|, j=1, \ldots, 2 m$.

Not a finite-gap solution: the two groups of roots (with mode numbers 1 and 0 respectively) do not repel but attract. Logarithmic cusp of the spectral density observed at the collision point.

- Note that these fictive magnons have nothing to do with the original mirror magnons.

Saddle-point solution in the double scaling limit (regime II)

$\ell, m, \sigma, \varphi \rightarrow \infty$ with $\hat{\sigma}=\frac{\sigma}{m}, \hat{\varphi}=\frac{\varphi}{m}, \hat{\ell}=\frac{\ell}{m}$ fixed
"Free energy" $\mathscr{F}_{m}(\ell, \sigma, \varphi) \equiv \log \mathscr{Z}_{m}(\ell, \sigma, \varphi)$ grows as "area" $m n=m(m+\ell)$
$\hat{\mathscr{F}}(\hat{\sigma}, \hat{\varphi}, \hat{\ell})=\operatorname{Lim}_{m \rightarrow \infty} \frac{\mathscr{F}_{m}(\ell, \sigma, \varphi)}{m(m+\ell)}$ - free energy per unit area (finite)

- spectral density $\rho(t)$ encoded in the resolvent

$$
G(t)=\sum_{k=1}^{m} \frac{1}{t-t_{k}}=\int_{b}^{a} \frac{d t^{\prime} \rho\left(t^{\prime}\right)}{t-t^{\prime}}
$$

- saddle-point equations reformulated as a RiemannHilbert problem for $\quad H(t) \equiv-\frac{1}{2} V^{\prime}(t)+G(t)-G(-t)=-2 \int_{b}^{a} \frac{d t_{1}}{2 \pi} \frac{y(t)}{y\left(t_{1}\right)} \frac{t V^{\prime}(t)-t_{1} V^{\prime}\left(t_{1}\right)}{t^{2}-t_{1}^{2}}, ~$ $y(t)=$ projection of the elliptic curve $a^{2} y^{2}=\left(a^{2}-t^{2}\right)\left(t^{2}-b^{2}\right)$
- support of density
$[-a,-b] \cup[b, a]$ determined by

$$
\int_{b}^{a} \frac{d t}{y(t)} V^{\prime}(t)=0, \quad \int_{b}^{a} \frac{d t}{y(t)} t^{2} V^{\prime}(t)=2 \pi m a
$$

Explicit expression of spectral density in regime II $\ell, \sigma, \varphi \sim m,|\varphi|>|\sigma|$

- Density:

$$
\rho(t)=\frac{1}{\pi} \frac{\ell t}{t^{2}-\sigma^{2}} \sqrt{\frac{\left(a^{2}-t^{2}\right)\left(t^{2}-b^{2}\right)}{\left(a^{2}-\sigma^{2}\right)\left(b^{2}-\sigma^{2}\right)}}+\frac{1}{\pi^{2}} \frac{t}{a} \sqrt{\frac{t^{2}-b^{2}}{a^{2}-t^{2}}} \Pi\left(\frac{a^{2}-b^{2}}{a^{2}-t^{2}} ; \psi \mid k^{2}\right)
$$

with $k^{2}=1-\frac{b^{2}}{a^{2}}, \quad \psi=\arcsin \frac{\sqrt{a^{2}-\varphi^{2}}}{\sqrt{a^{2}-b^{2}}}$

$$
\left.\begin{array}{l}
a^{2} E\left(\psi \mid k^{2}\right)-\sigma^{2} F\left(\psi \mid k^{2}\right)=\pi(2 m+\ell) a \\
F\left(\psi \mid k^{2}\right), \sqrt{\left(a^{2}-\sigma^{2}\right)\left(b^{2}-\sigma^{2}\right)}=\pi \ell a
\end{array}\right\} \Rightarrow a, b
$$

$$
\begin{aligned}
& \text { - Free energy: } \\
& \qquad \partial_{m} \mathscr{F}=(2 m+\ell) \log \frac{\left(a^{2}-b^{2}\right)}{4(2 m+\ell)^{2}}+\frac{2 \varphi}{\pi} \arctan \frac{\sqrt{a^{2}-\varphi^{2}}}{\sqrt{\varphi^{2}-b^{2}}}+2 \ell \operatorname{arctanh} \frac{\sqrt{b^{2}-\sigma^{2}}}{\sqrt{a^{2}-\sigma^{2}}}-\frac{2 \ell \sigma^{2}}{\sqrt{\left(a^{2}-\sigma^{2}\right)\left(b^{2}-\sigma^{2}\right)}}
\end{aligned}
$$

$$
\begin{aligned}
F\left(\psi \mid k^{2}\right) & =\int_{0}^{\psi} \frac{d \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}}, \quad E\left(\psi \mid k^{2}\right)=\int_{0}^{\psi} d \theta \sqrt{1-k^{2} \sin ^{2} \theta} \quad \begin{array}{l}
\text { incomplete elliptic integrals } \\
\text { of first and second kind }
\end{array} \\
\Pi\left(\alpha^{2} ; \psi \mid k^{2}\right) & =\int_{0}^{\psi} \frac{d \theta}{\left(1-\alpha^{2} \sin ^{2} \theta\right) \sqrt{1-k^{2} \sin ^{2} \theta}} \quad \text { incomplete elliptic integral of third kind }
\end{aligned}
$$

Explicit expression of spectral density in regime I

— obtained by setting $\varphi=b \quad(\psi=\pi / 2)$ in the solution in regime II

- Density:

$$
\rho(t)=\frac{1}{\pi} \frac{\ell t}{t^{2}-\sigma^{2}} \sqrt{\frac{\left(a^{2}-t^{2}\right)\left(t^{2}-b^{2}\right)}{\left(a^{2}-\sigma^{2}\right)\left(b^{2}-\sigma^{2}\right)}}+\frac{1}{\pi^{2}} \frac{t}{a} \sqrt{\frac{t^{2}-b^{2}}{a^{2}-t^{2}}} \Pi\left(\left.\frac{a^{2}-b^{2}}{a^{2}-t^{2}} \right\rvert\, 1-\frac{b^{2}}{a^{2}}\right)
$$

$$
\left.k^{2}=1-\left(k^{\prime}\right)^{2}, k^{\prime}=\frac{b}{a} \quad \begin{array}{l}
a^{2} \mathbb{E}-\sigma^{2} \mathbb{K}=\pi(2 m+\ell) a \\
\sqrt{\left(a^{2}-\sigma^{2}\right)\left(b^{2}-\sigma^{2}\right)} \mathbb{K}=\pi \ell a
\end{array}\right\} \Rightarrow a, b
$$

This is the density of the Bethe roots that correspond to the Frolov-Tseytlin folded string.
[Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021]

- Free energy:

$$
\partial_{m} \mathscr{F}=(2 m+\ell) \log \frac{\left(a^{2}-b^{2}\right)}{4(2 m+\ell)^{2}}+2 \ell \operatorname{arctanh} \frac{\sqrt{b^{2}-\sigma^{2}}}{\sqrt{a^{2}-\sigma^{2}}}-\frac{2 \ell \sigma^{2}}{\sqrt{\left(a^{2}-\sigma^{2}\right)\left(b^{2}-\sigma^{2}\right)}}+\max (|\varphi|, \mid \sigma)
$$

$\mathbb{E}=E\left(k^{2}\right)=\int_{0}^{\pi / 2} d \theta \sqrt{1-k^{2} \sin ^{2} \theta}, \quad \mathbb{K}=K\left(k^{2}\right)=\int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}}, \quad \Pi\left(\alpha^{2} \mid k^{2}\right)=\int_{0}^{\pi / 2} \frac{d \theta}{\left(1-\alpha^{2} \sin ^{2} \theta\right) \sqrt{1-k^{2} \sin ^{2} \theta}}$

Explicit solution for square fishnet $(\ell=0)$ with $\sigma=0 \Leftrightarrow x_{12}^{2} x_{34}^{2}=x_{14}^{2} x_{23}^{2}$
$\Delta_{1}=\Delta_{2}=\Delta_{3}=\Delta_{4}=m$ and special kinematics $x_{12}^{2} x_{34}^{2}=x_{14}^{2} x_{23}^{2}$

- Density: $\quad b=0, a=\sqrt{\varphi^{2}+4 \pi^{2} m^{2}}$

$$
\rho(t)=\frac{1}{2 \pi^{2}} \log \left|\frac{\sqrt{\varphi^{2}+4 \pi^{2} m^{2}-t^{2}}+2 \pi m}{\sqrt{\varphi^{2}+4 \pi^{2} m^{2}-t^{2}}-2 \pi m}\right|
$$

- Free energy: $\mathscr{F}=m^{2} \log \left(\frac{\varphi^{2}+4 \pi^{2} m^{2}}{16 m^{2}}\right)-\frac{\varphi^{2}}{4 \pi^{2}} \log \left(\frac{\varphi^{2}+4 \pi^{2} m^{2}}{\varphi^{2}}\right)+\frac{2 \varphi m}{\pi} \operatorname{arccot}\left(\frac{\varphi}{2 \pi m}\right)$

"Double light-like limit"

Euclidean OPE and light-like limits

- Euclidean short-distance (OPE) limit $\quad(\hat{\sigma} \rightarrow \infty$ with $\hat{\varphi}$ fixed)
[Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021]

$$
\begin{aligned}
& \sigma \rightarrow \infty \Rightarrow U \rightarrow 0, V \rightarrow 1 \\
& \left|x_{12}\right|^{2},\left|x_{34}\right|^{2} \sim \sqrt{U}\left|x_{13}\right|^{2} \quad(U \rightarrow 0, V \rightarrow 1)
\end{aligned}
$$

i.e. $x_{1} \sim x_{2}, x_{3} \sim x_{4}=>$ OPE limit in the U-channel.

- Double light-cone, or nul, limit $(\hat{\varphi} \rightarrow \infty$ with $\hat{\sigma}$ fixed $)$

$$
\begin{aligned}
& \varphi \rightarrow \infty \Rightarrow U \rightarrow 0, V \rightarrow 0 \\
& x_{12}^{2}, x_{34}^{2} \sim \sqrt{U}\left|x_{13}\right|\left|x_{24}\right| ; \quad x_{14}^{2}, x_{23}^{2} \sim \sqrt{V}\left|x_{13}\right|\left|x_{24}\right|
\end{aligned}
$$

i.e. Minkowski intervals $x_{12}^{2}, x_{23}^{2}, x_{34}^{2}, x_{41}^{2}$ become simultaneously light-like

Exact solutions in the Euclidean OPE and in the double light-like limits

- Euclidean short-distance limit $(\hat{\sigma} \rightarrow \infty$ with $\hat{\varphi}$ fixed) :

Ladders: $\quad f_{k}(z, \bar{z}) \rightarrow \int_{0}^{\infty}(2|\sigma|)^{k} t^{k-1} e^{-t} d t=(2|\sigma|)^{k}(k-1)$!

$$
\begin{aligned}
I_{m, n}^{\mathrm{BD}} & \rightarrow \frac{(2|\sigma|)^{m n}}{\mathcal{N}} \underset{j, k}{\operatorname{det}}[(j+k+\ell-2)!]=\left(\log \frac{1}{U}\right)^{m n} C_{m, n} \\
C_{m, n} & =\frac{G(m+1) G(n+1)}{G(m+n+1)}, \quad \begin{array}{c}
G(m)=1!2!\ldots(m-2)! \\
\text { Barnes' G-function }
\end{array}
\end{aligned}
$$

- Double light-cone, or nul, limit ($\hat{\rho} \rightarrow \infty$ with σ fixed):

Ladders: $f_{k}(z, \bar{z}) \underset{\varphi>k}{\rightarrow} 2 \int_{0}^{\varphi} t^{2 k-1} d t=\frac{\varphi^{2 k}}{k}$

$$
\begin{aligned}
I_{m, n}^{\mathrm{BD}} \rightarrow \frac{\varphi^{2 m(m+\ell)}}{\mathcal{N}} \times \operatorname{det}\left[\frac{1}{i+j-1+n-m}\right]_{i, j=1, \ldots, m} & =\frac{\varphi^{2 m n}}{\mathcal{N}} \times \mathcal{N}\left(C_{m, n}\right)^{2} \\
& =C_{m, n}\left(\log \frac{1}{U}\right)^{m n} \times C_{m, n}\left(\log \frac{1}{V}\right)^{m n}
\end{aligned}
$$

Comparison with the solution in the double scaling limit

- $m \rightarrow \infty$ asymptotics of exact solution in Euclidean OPE and double light-cone limits matches $\hat{\sigma} \rightarrow \infty$ and $\hat{\varphi} \rightarrow \infty$ limits of the saddle-point solution
- Euclidean short-distance limit ($\hat{\sigma} \rightarrow \infty$ with $\hat{\varphi}$ fixed) :
[Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021]

$$
\begin{aligned}
a \approx & \sigma+(\sqrt{m}+\sqrt{n})^{2}, b \approx \sigma+(\sqrt{m}-\sqrt{n})^{2} \\
\mathscr{F} & =m n \log (2 \sigma)+\frac{3}{2} m n+\frac{1}{2} m^{2} \log (m) \\
& +\frac{1}{2} n^{2} \log n-\frac{1}{2}(m+n)^{2} \log (m+n)
\end{aligned}
$$

- Double light-cone, or nul, limit $\quad(\hat{\varphi} \rightarrow \infty$ with σ fixed):

$$
\begin{aligned}
a \approx & \varphi, b \approx \frac{n-m}{n+m} \varphi \\
\mathscr{F}= & 2 m n \log (\varphi)+3 m n+m^{2} \log (m) \\
& +n^{2} \log (n)-(m+n)^{2} \log (m+n)
\end{aligned}
$$

Summary

- The bulk thermodynamical limit $\hat{\sigma}=\hat{\varphi}=0$, the Euclidean OPE limit $\hat{\sigma} \rightarrow \infty$ and the double light-cone limit $\hat{\varphi} \rightarrow \infty$ are analytically related.

- HOLOGRAPHIC DUAL OF OPEN FISHNETS?

Results compatible with existence of holographic dual.
Saddle-point equations = Bethe equations for some magnons in t-space.
However, not clear how to interpret the "unphysical" mode numbers in regime II.

- Problem still open.
- Curious factorisation observed in the light-cone limit where the result is a product of two factors associated with the direct and with the cross channels

$$
I_{m, n}^{\mathrm{BD}}=C_{m, n}\left(\log \frac{1}{U}\right)^{m n} \times C_{m, n}\left(\log \frac{1}{V}\right)^{m n}
$$

- There is interpretation of the OPE limit in terms of hopping magnons ("stampedes") [Olivucci-Vieira, 2022].
If it can be extended to the light-like limit, how the above factorisation appears?
- Possible arctic curve phenomenon.

