Snake Modules, Extended T-Systems and Correlation

Functions for higher rank
Henrik Jürgens

bergische UNIVERSITÄT WUPPERTAL

February 6, 2023

Overview

An inhomogeneous XXX-Model
Correlation functions in the $\mathfrak{s l}_{2}$ case
The Snail Construction for $\mathfrak{s l}_{2}$
T-Systems

Generalization to higher rank
Snake modules and extended t-systems

Conclusion

1. 2006 Boos, Jimbo, Miwa, Smirnov and Takeyama 'A RECUSION FORMULA FOR THE CORRELATION FUNCTIONS OF AN INHOMOGENEOUS XXX-MODEL'
2. 2012 E. Moukhin - C. A. S. Young
'Extended T-Systems'
3. 2018 Boos, Hutsalyuk and Nirov
'ON THE CALCULATION OF THE CORRELATION FUNCTIONS OF THE $\mathfrak{s l}_{3}$-MODEL BY MEANS OF THE REDUCED QKZ EQUATION'
4. 2019 Klümper, Nirov and Razumov
'REDUCED QKZ EQUATION: GENERAL CASE'

An inhomogeneous XXX-Model

- $H_{X X X}=\frac{1}{2} \sum_{j}\left(\sigma_{j}^{x} \sigma_{j+1}^{x}+\sigma_{j}^{y} \sigma_{j+1}^{y}+\sigma_{j}^{z} \sigma_{j+1}^{z}\right)$ gapless case $q \rightarrow 1, \Delta=\frac{q+q^{-1}}{2}$
- 'Inhomogeneous chain' generated by $\operatorname{tr}\left(R_{a,-N}(\lambda) \cdots R_{a, 0}(\lambda) R_{a, 1}\left(\lambda-\lambda_{1}\right) \cdots R_{a, m}\left(\lambda-\lambda_{m}\right) R_{a, m+1}(\lambda) \cdots R_{a, N}(\lambda)\right)$
- Still exactly solvable but the interaction is nonlocal.
- Vertex operator approach (XXZ gapped regime)
- multiple integrals which can be analytically continued for $q \rightarrow 1$
- Factorisation (Boos, Korepin and Smirnov)

Conjecture 1.1.

$$
\begin{align*}
{\left[D_{1, . ., m}\left(\lambda_{1}, \ldots, \lambda_{m}\right)\right]_{\epsilon_{1} \ldots \epsilon_{m}}^{\epsilon_{1} \ldots \epsilon_{m}} } & :=\langle\operatorname{vac}|\left(E^{\epsilon_{\epsilon_{1}}}\right)_{1} \cdots\left(E^{\epsilon_{m}}\right)_{\epsilon_{m}}|v a c\rangle \tag{1.1}\\
& =\sum \prod \omega\left(\lambda_{i}-\lambda_{j}\right) f\left(\lambda_{1}, \ldots, \lambda_{m}\right),
\end{align*}
$$

where $\omega(\lambda)$ is a single transzendental function and the functions $f\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ are rational.

- Odd integer values of ζ appear in the Taylor series of ω for the homogeneous limit.
- Proof of (1.1) via the 'Snail Construction'.
- Result can be written in terms of a transfer matrix over an auxilliary space of 'fractional dimension'.
- Generalization to XXZ
- Fermionic structure $\longrightarrow \mathrm{HGS}$ papers.

Correlation functions in the $\mathfrak{s l}_{2}$ case

- Define the rational R-matrix by

$$
R(\lambda)=\frac{\rho(\lambda)}{\lambda+1}(\lambda+P), \quad \rho(\lambda)=-\frac{\Gamma\left(\frac{\lambda}{2}\right) \Gamma\left(\frac{1}{2}-\frac{\lambda}{2}\right)}{\Gamma\left(-\frac{\lambda}{2}\right) \Gamma\left(\frac{1}{2}+\frac{\lambda}{2}\right)}
$$

Proposition 1.2. The reduced density matrix $D_{1, \ldots, m}$ fulfills

1. The global $G L_{2}(\mathbb{C})$-invariance .
2. The R-matrix relations

$$
\begin{aligned}
& D_{1, \ldots, i+1, i, \ldots, m}\left(\lambda_{1}, \ldots, \lambda_{i+1}, \lambda_{i}, \ldots, \lambda_{m}\right)= \\
& R_{i+1, i}\left(\lambda_{i+1, i}\right) D_{1, \ldots, m}\left(\lambda_{1}, \ldots, \lambda_{m}\right) R_{i, i+1}\left(\lambda_{i, i+1}\right) .
\end{aligned}
$$

3. Left-right reduction relations

$$
\begin{aligned}
& \operatorname{tr}_{1}\left(D_{1, \ldots, m}\left(\lambda_{1}, \ldots, \lambda_{m}\right)\right)=D_{2, \ldots, m}\left(\lambda_{2}, \ldots, \lambda_{m}\right) \\
& \operatorname{tr}_{n}\left(D_{1, \ldots, m}\left(\lambda_{1}, \ldots, \lambda_{m}\right)\right)=D_{1, \ldots, m-1}\left(\lambda_{1}, \ldots, \lambda_{m-1}\right) .
\end{aligned}
$$

4. The rqKZ-equation

$$
D_{1, \ldots, m}\left(\lambda_{1}-1, \lambda_{2}, \ldots, \lambda_{m}\right)=A_{\overline{1}, 1}\left(\lambda_{1}, \ldots, \lambda_{m}\right)\left(D_{\overline{1}, 2, \ldots, m}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)\right) .
$$

Note:

- Due to $\rho(\lambda) \rho(-\lambda)=1$ and $\rho(\lambda-1) \rho(\lambda)=-\frac{\lambda}{\lambda-1}$ the coefficients in 2 . and 4. are rational.
- $D_{1, . ., m}\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is translationally invariant.

$$
D_{1, \ldots, m}\left(\lambda_{1}+u, \ldots, \lambda_{m}+u\right)=D_{1, \ldots, m}\left(\lambda_{1}, \ldots, \lambda_{m}\right)
$$

- $D_{1, . ., m}\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ fullfills the spin-conservation rule.

$$
\left[D_{1, . ., m}\left(\lambda_{1}, \ldots, \lambda_{m}\right)\right]_{\epsilon_{1} \ldots \epsilon_{m}}^{\epsilon_{1}, \ldots \epsilon_{m}}=0 \quad \text { if } \quad n_{1}(\epsilon) \neq n_{1}(\bar{\epsilon}) .
$$

Proposition 1.3.
5. $D_{1, . ., m}\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is meromorphic in $\lambda_{1}, \ldots, \lambda_{m}$ with at most simple poles at $\lambda_{i}-\lambda_{j} \in \mathbb{Z} \backslash\{0, \pm 1\}$.
6. $\forall 0<\delta<\pi$

$$
\lim _{\substack{\lambda_{1} \rightarrow \infty^{\prime} \\ \lambda_{\mathbf{1}} \in S_{\delta}}} D_{1, . ., m}\left(\lambda_{1}, \ldots, \lambda_{m}\right)=\frac{1}{2} \mathbf{1}_{1} D_{2, \ldots, m}\left(\lambda_{2}, \ldots, \lambda_{m}\right),
$$

where $S_{\delta}:=\{\lambda \in \mathbb{C}|\delta<|\arg (\lambda)|<\pi-\delta\}$.

- 1. - 6. determine D_{m} completely.

Remark 1.4.
7. From 2., 3., 4. and the analyticity of D_{m} at $\lambda_{1}=\lambda_{2}$ and $\lambda_{1}=\lambda_{2}-1$

$$
\Rightarrow \quad P_{1,2}^{-} D_{1,2, . ., m}\left(\lambda-1, \lambda, \ldots, \lambda_{m}\right)=P_{1,2}^{-} D_{3, . ., m}\left(\lambda_{3}, \ldots, \lambda_{m}\right)
$$

The Snail Construction for $\mathfrak{s l}_{2}$

- 5.: Since D_{m} is meromorphic in λ_{1} with at most simple poles, it is enough to calculate the residues and consider the asymptotic behaviour.
- Claim: We have the relation

$$
\begin{align*}
& \underset{\lambda_{1, j}=k}{\operatorname{res}} D_{1, . ., m}\left(\lambda_{1}, \ldots, \lambda_{m}\right)= \tag{1.2}\\
& \underset{\lambda_{1, j}=k}{\operatorname{res}}\left\{\frac{\omega\left(\lambda_{1, j}\right)}{1-\lambda_{1, j}^{2}} \tilde{X}[1, j]\right. \\
& \left.\left(\lambda_{1}, \ldots, \lambda_{m}\right)\right\}\left(D_{m-2}\left(\lambda_{2}, \ldots, \hat{\lambda}_{j}, \ldots, \lambda_{m}\right)\right)
\end{align*}
$$

for the residues of $D_{1, . ., m}\left(\lambda_{1}, \ldots, \lambda_{m}\right)$, where $\frac{\omega\left(\lambda_{1, j}\right)}{1-\lambda_{1, j}^{2}} \tilde{X}^{[1, j]}\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is a single meromorphic function, the 'Snail Operator'.
\star At integer values $\lambda_{1, j}=k$, the Snail Operator is completely determined by the Kirillov Reshetikhin modules $W^{(k)}$.

- Looking at the asymptotics w.r. to λ_{1} after substracting the poles, it was possible to prove a recursion relation for $D_{1, . ., m}\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ using Liouvilles theorem.

In Pictures:

Figure 1: rqKZ-equation two times.

Taking the residue at $\mu_{1}=\mu_{2}, R_{12}\left(\mu_{1}-\mu_{2}-1\right)$ in the red circle (figure 1) reduces to $2 P_{12}^{-}$up to a scalar prefactor. As a consequence, we can apply the relation 7 . to obtain the result in figure 2 .

Figure 2: The Snail with two loops $(k=2)$.

Figure 2 has to be understood as $\lim _{\mu_{1} \rightarrow \mu_{2}-1}\left(\mu_{1}-\mu_{2}+1\right) \times$ Figure 1 , where we split the operator $2 P_{12}^{-}$(a cross) into the tensor product of a singlet and its dual. The operator in the red box is the Snail Operator with $k=2$ loops.

Drawing the Snail Operator in a slightly less compact way by not splitting up the projector P^{-}, we can see that it has k closed loops (figure 3).

Figure 3: The Snail Operator with k (closed) loops.

Note again that the picture is defined via the residuum at $\mu=\mu_{2}$ of the meromorphic function defined through the same picture, but with general parameter $\mu_{2} \neq \mu$ of the second line.

T-Systems

Let us try to understand \star algebraically:

- For the residuum at $\lambda_{1,2}=-k-1$, we have to consider the Snail Operator with k loops.
- Since every line can be regarded a fundamental representation of the Yangian $Y\left(\mathfrak{s l}_{2}\right)$, we have to deal with the tensor product of fundamental representations $W^{(1)}(\mu-k) \otimes W^{(1)}(\mu-k+1) \otimes \cdots W^{(1)}(\mu)$.
- Note that the spectral parameters are in special position w.r. to their respecive neighbours, i.e. we have a short exact sequence:

$$
W^{(0)} \hookrightarrow W^{(1)}(\mu) \otimes W^{(1)}(\mu+1) \rightarrow W^{(2)}(\mu)
$$

- Considering a partition of unity with the repective projectors in the Snail Operator, the projector onto $W^{(0)}$ cancels out.
- Writing only the irreducible composition factors of the possible short exact sequences, we get equations in the Grothendieck ring, the \boldsymbol{t}-systems. For instance

$$
\left[W^{(k)}(\mu)\right]\left[W^{(k)}(\mu+1)\right]=\left[W^{(k+1)}(\mu)\right]\left[W^{(k-1)}(\mu+1)\right]+1
$$

- These are somtimes written in terms of transfer matrices with the respective representations in the auxiliary space.
- Using the \boldsymbol{t}-system above, one can derive the \boldsymbol{t}-systems

$$
\left[W^{(p)}(\mu-p)\right]\left[W^{(1)}(\mu)\right]=\left[W^{(p+1)}(\mu-p)\right]+\left[W^{(p-1)}(\mu-p)\right]
$$

which appear in the Snail Operator successively.

- The second component cancels out as above. Thus, only the Kirillov Reshetikhin module $W^{(k)}$ remains.

Generalization to higher rank

- Properties 1.,2. and 3. are straightforward to generalize.
- To write a rqKZ equation for rank $n \geq 3$, we need to introduce an additional density matrix $D^{(1)}$. Then we have two rqKZ equations between D and $D^{(1)}$.

Figure 4: rqKZ equation combined

- 5. and 6. are thought to have a straightforward generalization aswell, but it has to be proven (limit from the massive Vertex Operator approach).
- Finally, a generalization of the identity 7. for the projector P^{-}on the singlet exists, but it only applies for the combined rqKZ equation when calculating the residue.
- Snail Operator decouples only when taking the residue at $\lambda_{12}= \pm(n+1) k, k \in \mathbb{N} \backslash\{0\}$.
- The other residues at $\lambda_{12}= \pm(n+1)\left(k+\frac{1}{2}\right), k \in \mathbb{N} \backslash\{0\}$, have to be considered seperately.
- There is a way to get a relation with the projector onto the antifundamental representation for $\mathfrak{s l}_{3}$, generally it is still a problem.
- Possible to calculate the residues of D_{4} in terms of D_{3} and D_{2} for $\mathfrak{s l}_{3}$ in mathematica using the result of Boos et al. 2018.

However, the Snail Operator can still be defined in the same way as for $\mathfrak{s l}_{2}$.

Figure 5: The Snail Operator with three loops.

- What are the composition factors in the tensor product of fundamental and antifundamental representations of the Yangian?

Snake modules and extended t-systems

- Category of fin. dim. repr. of $Y\left(\mathfrak{s l}_{n+1}\right)$ is far from semisimple, but there is a multiplicative notion of dominant highest (loop-)weights.
- The fundamental evaluation modules have (multiplicative!) highest I-weights $Y_{i, a}, i \in\{1, \ldots, n\}=: I, a \in \mathbb{C}$.
- Any irreducible module is contained in the tensor product of fundamental modules.
- For any monomial $m=\Pi_{i \in I, a \in \mathbb{C}} Y_{i, a}$ in the fundamental I-weights, there is a unique fin. dim. simple module $\boldsymbol{L}(\boldsymbol{m})$.
- W.I.o.g. we can assume all loop parameters to be half integer valued since
- any fusion is happening when the loop parameters differ by half integers.
- we can recover any simple module by adjoining new parameters $a \in \mathbb{C}$ via the hopf algebra automorphism τ_{a} and considering tensor products.
- We can visualize these modules $L(m)$ on the lattice $I \times \mathbb{Z}=: \mathcal{X}$!

Snake position and snakes

- Let $(i, k) \in \mathcal{X}$. A point $\left(i^{\prime}, k^{\prime}\right)$ is said to be in snake position with respect to (i, k) iff $k^{\prime}-k \geq\left|i^{\prime}-i\right|+2$.
- The point $\left(i^{\prime}, k^{\prime}\right)$ is in minimal snake position to (i, k) iff $k^{\prime}-k$ is equal to the lower bound.
- We say that $\left(i^{\prime}, k^{\prime}\right) \in \mathcal{X}$ is in prime snake position with respect to (i, k) iff $i^{\prime}+i \geq k^{\prime}-k \geq\left|i^{\prime}-i\right|+2$.
- A finite sequence $\left(i_{t}, k_{t}\right)(1 \leq t \leq M \in \mathbb{N})$ of points in \mathcal{X} is a snake iff for all $2 \leq t \leq M,\left(i_{t}, k_{t}\right)$ is in snake position with respect to (i_{t-1}, k_{t-1}).
- It is a minimal (resp. prime) snake iff any two successive points are in prime snake position to each other.

Snake modules

- The simple module $\boldsymbol{L}(\boldsymbol{m})$ is a (minimal/prime) snake module iff $m=\prod_{t=1}^{M} Y_{i_{t}, k_{t}}$ for some (minimal/prime) snake $\left(i_{t}, k_{t}\right)_{1 \leq t \leq M}$.
- A snake module is prime iff its snake is prime.
- Prime snake modules are real.

- For any two successive points define the neighbouring points by

$$
\begin{aligned}
& \mathbb{X}_{i, k}^{i^{\prime}, k^{\prime}}:= \begin{cases}\left(\left(\frac{1}{2}\left(i+k+i^{\prime}-k^{\prime}\right), \frac{1}{2}\left(i+k-i^{\prime}+k^{\prime}\right)\right)\right) & k+i>k^{\prime}-i^{\prime} \\
\emptyset & k+i=k^{\prime}-i^{\prime}\end{cases} \\
& \mathbb{Y}_{i, k}^{i^{\prime}, k^{\prime}}:= \begin{cases}\left(\left(\frac{1}{2}\left(i^{\prime}+k^{\prime}+i-k\right), \frac{1}{2}\left(i^{\prime}+k^{\prime}-i+k\right)\right)\right) & k+N+1-i>k^{\prime}-\left(N+1-i^{\prime}\right) \\
\emptyset & k+N+1-i=k^{\prime}-N-1+i^{\prime} .\end{cases}
\end{aligned}
$$

- For any prime snake $\left(i_{t}, k_{t}\right)_{1 \leq k \leq M}$ we define its neighbouring snakes $\mathbb{X}:=\mathbb{X}_{\left(i_{t}, k_{t}\right)_{1 \leq k \leq M}}$ and $\mathbb{Y}:=\mathbb{Y}_{\left(i_{t}, k_{t}\right)_{1 \leq K \leq M}}$ by concatenating its neighbouring points.
\Rightarrow We have the extended \boldsymbol{t}-system

$$
\begin{array}{r}
{\left[L\left(\prod_{t=1}^{M-1} Y_{i_{t}, k_{t}}\right)\right]\left[L\left(\prod_{t=2}^{M} Y_{i_{t}, k_{t}}\right)\right]=\left[L\left(\prod_{t=2}^{M-1} Y_{i_{t}, k_{t}}\right)\right]\left[L\left(\prod_{t=1}^{M} Y_{i_{t}, k_{t}}\right)\right]} \\
+\left[L\left(\prod_{(i, k) \in \mathbb{X}} Y_{i_{t}, k_{t}}\right)\right]\left[L\left(\prod_{(i, k) \in \mathbb{Y}} Y_{i_{t}, k_{t}}\right)\right], \tag{2.1}
\end{array}
$$

where the summands on the right hand side are classes of simple modules.

- Let's draw an example for A_{4}.

- The extended t-system includes the usual t-system.
- Note that the loop parameters of successive lines in the Snail Operator are in minimal snake position.

Conclusion

One can now proof the assertions

- The tensor product $V_{N(m), k} \otimes V_{N(m+1), k+n+1} \otimes \cdots \otimes V_{N(m+l), k+l(n+1)}$ of $I+1$ many antifundamental and fundamental modules has Fibonacci $(I+1)$ many composition factors, one of which is the minimal snake module $S_{m}^{(1+1)}:=L\left(\prod_{t=0}^{\prime} Y_{N(t+m), k+t(n+1)}\right)$, where $N(t):=\left\{\begin{array}{l}1, t \text { even } \\ n, t \text { odd }\end{array}\right.$.
- Using the ext. t-system above, one can derive the ext. t-systems

$$
\left[S_{m}^{(p)}\left(\mu-p \frac{n+1}{2}\right)\right]\left[S_{m+1}^{(1)}(\mu)\right]=\left[S_{m+1}^{(p+1)}\left(\mu-p \frac{n+1}{2}\right)\right]+\left[S_{m+1}^{(p-1)}\left(\mu-p \frac{n+1}{2}\right)\right]
$$

which appear in the Snail Operator successively.

- Conjecture 2.1. Only the minimal snake module $\boldsymbol{S}^{(\boldsymbol{k})}$ remains in the Snail Operator - completely analogue to $\mathfrak{s l}_{2}$.

Let's draw the snake in the snail for $\mathfrak{s l}_{3}$ and $(k=4)$:

Let the action of the density-Matrices D and $D^{(1)}$ be defined as

$$
D_{1, \ldots, m}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\left(X_{1, \ldots, m}\right):=\operatorname{tr}_{1, \ldots, m}\left(D_{1, \ldots, m}\left(\lambda_{1}, \ldots, \lambda_{m}\right) X_{1, \ldots, m}\right),
$$

$$
D_{\overline{1}, 2, \ldots, m}^{(1)}\left(\lambda_{1}, \ldots, \lambda_{m}\right)\left(X_{\overline{1}, 2, \ldots, m}\right):=\operatorname{tr}_{\overline{1}, 2, \ldots, m}\left(D_{\overline{1}, 2, \ldots, m}^{(1)}\left(\lambda_{1}, \ldots, \lambda_{m}\right) X_{\overline{1}, 2, \ldots, m}\right)
$$

Then one can write the two reduced qKZ-equations as
$D_{\overline{1}, 2, \ldots, m}^{(1)}\left(\lambda_{1}-\frac{n+1}{2}, \lambda_{2}, \ldots, \lambda_{m}\right)=A_{1, \overline{1} \mid 2, \ldots, m}^{(1)}\left(\lambda_{1} \mid \lambda_{2}, \ldots, \lambda_{m}\right)\left(D_{1, \ldots, m}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)\right)$
$:=\operatorname{tr}_{1}\left(R_{1 m}\left(\lambda_{1}-\lambda_{m}\right) \cdots R_{12}\left(\lambda_{1}-\lambda_{2}\right) D_{1, \ldots, m}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)(n+1) P_{1 \overline{1}}^{-}\right.$
$\left.R_{21}\left(\lambda_{2}-\lambda_{1}\right) \cdots R_{m 1}\left(\lambda_{m}-\lambda_{1}\right)\right)$,
$D_{1, \ldots, m}\left(\lambda_{1}-\frac{n+1}{2}, \lambda_{2}, \ldots, \lambda_{m}\right)=A_{\overline{1}, 1 \mid 2, \ldots, m}^{(2)}\left(\lambda_{1} \mid \lambda_{2}, \ldots, \lambda_{m}\right)\left(D_{\overline{1}, 2, \ldots, m}^{(1)}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)\right)$
$:=\operatorname{tr}_{\overline{1}}\left(\overline{\bar{R}}_{\overline{1} m}\left(\lambda_{1}-\lambda_{m}\right) \cdots \overline{\bar{R}}_{\overline{1} 2}\left(\lambda_{1}-\lambda_{2}\right) D_{\overline{1}, 2, \ldots, m}^{(1)}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)(n+1) P_{1 \overline{1}}^{-}\right.$
$\left.\bar{R}_{2 \overline{1}}\left(\lambda_{2}-\lambda_{1}\right) \cdots \bar{R}_{m \overline{1}}\left(\lambda_{m}-\lambda_{1}\right)\right)$,
where $\left(P_{1 \overline{1}}^{-}\right)^{2}=P_{1 \overline{1}}^{-}$is the projector onto the singlet in the tensor product $V \otimes \bar{V}$ of the fundamental and antifundamental representation of $\mathfrak{s l}_{n}$.

Proof of the projection relation 7. for $\mathfrak{s l}_{2}$:

