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An inhomogeneous XXX-Model

Hxxx = % ZJ- (Jfaf_,_l + JJ}-’UJ)-/H + O'J-ZO'J-Z+1)
gapless case g — 1, A = %‘771

'Inhomogeneous chain’ generated by

tr (Ra,—n(A) -+ Rao(A)Rai(A — A1) -+ Ram(A — Am)Ra,m+1(A) - - - Ra,n(A))
Still exactly solvable but the interaction is nonlocal.

Vertex operator approach (XXZ gapped regime)

» multiple integrals which can be analytically continued for ¢ — 1

Factorisation (Boos, Korepin and Smirnov)
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Conjecture 1.1.

[D1,...m(A1, - )"")]22‘: = (vac| (E%5 )1+ (E“c )m |vac) (1.1)
=Y T w = A)F (A, oo Am),

where w(\) is a single transzendental function and the functions
f(A1, ..., An) are rational.

e Odd integer values of ¢ appear in the Taylor series of w for the
homogeneous limit.

Proof of (1.1) via the 'Snail Construction’.

Result can be written in terms of a transfer matrix over an auxilliary
space of 'fractional dimension’.

Generalization to XXZ

e Fermionic structure — HGS papers.
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Correlation functions in the sl, case

e Define the rational R-matrix by

RO) =22 0Py, ) = -

Proposition 1.2. The reduced density matrix Dy, ., fulfills
1. The global GLy(C)-invariance .
2. The R-matrix relations

D1, it1iir.m(As s A1, Ay ooy Am) =
Rig1,i(Nig1,i) D1, om(A1y o Am) Ri i1 (Niig1)-

3. Left-right reduction relations

t'r:[(Dl,m’m(/\l7 ..
tr,,(Dl)m’m()\l, ..

,...,m()\Qa EE) )\m)

;Am))
A Lom—1(A1s s Am—1)-

D>
;Am)) =D
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4. The rqgKZ-equation

D1 m(M = 1,00, s Am) = A7 1O, ooy Am)(Dia (A1, Ay s Am))-

EEREE)

Note:

e Due to p(A)p(—A) =1 and p(A — 1)p(X) = — 525 the coefficients in 2.
and 4. are rational.

o Dy m(A1,...,Am) is translationally invariant.
Dl,..,m(>\1 + U, A+ U) = Dl,‘.,m()\la ey )\,—,,)

e Dy . m(A1,..., Am) fullfills the spin-conservation rule.

10

[Dl,..,m()\la ...,)\m)]elmem =0 if nl(e) # nl(E).

€1...€m
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Proposition 1.3.
5. D1, .m(A1, ..., Am) is meromorphic in Aq, ..., Ay, with at most simple
poles at A\; — \j € Z\{0, £1}.
6. VO<d<m

. 1
lim Dl,..,m()\ly -~-7)\m) = 511D2,...,m()\2a ...7)\m),

A1 —00
A1 ESs

where S5 := {\ € C|d < |arg(\)| <7 —d}.
e 1. - 6. determine D,,, completely.
Remark 1.4.
7. From 2., 3., 4. and the analyticity of D, at Ay = Ao and A\; = Ap — 1

= PDio (A= LA s Am) = PaDs, m(Agy oo Am).
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The Snail Construction for sl,

e 5.: Since D,, is meromorphic in \; with at most simple poles, it is
enough to calculate the residues and consider the asymptotic
behaviour.

e Claim: We have the relation

re§kD1,”’m()\1,...,)\m) = (12)
w(Ay) o N
Jres, {l_)éJx[lvf1(A1, ...,/\m)} (Dm—2(A2; - Ajy ey Am))

for the residues of Dy, m(A1, ..., Am), where ‘f(_’\i/\l.;;f?)?[l*f](/\l, vy Am) IS @
single meromorphic function, the 'Snail Operator’y.j
% At integer values A1 ; = k, the Snail Operator is completely determined
by the Kirillov Reshetikhin modules W),
» Looking at the asymptotics w.r. to A1 after substracting the poles, it
was possible to prove a recursion relation for D1, m(A1, ..., Am) using
Liouvilles theorem.
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In Pictures:
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Figure 1: rqKZ-equation two times.

Taking the residue at p3 = up, Ri2(u1 — p2 — 1) in the red circle (figure 1)
reduces to 2P, up to a scalar prefactor. As a consequence, we can apply
the relation 7. to obtain the result in figure 2.
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Figure 2: The Snail with two loops (k = 2).

Figure 2 has to be understood as lim,,, ,,,,—1 (11 — p2 + 1) xFigure 1, where
we split the operator 2P, (a cross) into the tensor product of a singlet and
its dual. The operator in the red box is the Snail Operator with k = 2 loops.
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Drawing the Snail Operator in a slightly less compact way by not splitting

up the projector P~, we can see that it has k closed loops (figure 3).

1Y =]
= '|//"z »z
= ’”
A A Wy PP /‘q vy =4 4 L s /Aq YVYY
R N I
1 T f 1 rrT
k—

Figure 3: The Snail Operator with k (closed) loops.

Note again that the picture is defined via the residuum at p = py of the
meromorphic function defined through the same picture, but with general

parameter up # i of the second line.
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T-Systems

Let us try to understand * algebraically:

» For the residuum at A\; > = —k — 1, we have to consider the Snail

Operator with k loops.

e Since every line can be regarded a fundamental representation of the
Yangian Y(sl2), we have to deal with the tensor product of fundamental
representations WM (u — k) @ W (u— k+ 1) @ - WO ().

e Note that the spectral parameters are in special position w.r. to their

respecive neighbours, i.e. we have a short exact sequence:
WO — wh () @ WO (u+1) = W ()

e Considering a partition of unity with the repective projectors in the
Snail Operator, the projector onto W(® cancels out.
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Writing only the irreducible composition factors of the possible short
exact sequences, we get equations in the Grothendieck ring, the
t-systems. For instance

(W ()W (e + 1)] = WD ()W (e + 1)] + 1.

These are somtimes written in terms of transfer matrices with the

respective representations in the auxiliary space.

Using the t-system above, one can derive the t-systems

(W& (= pI WO ()] = WD (= p)] + WD (1 — p)]

which appear in the Snail Operator successively.

The second component cancels out as above. Thus, only the Kirillov
Reshetikhin module W) remains.
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Generalization to higher rank

e Properties 1.,2. and 3. are straightforward to generalize.

e To write a rqKZ equation for rank n > 3, we need to introduce an
additional density matrix D). Then we have two rqKZ equations

between D and D).

A Ar

A 4 A

A

‘Y V.

A A
N A-m-A
3y
A A A

LA A

Figure 4: rqKZ equation combined
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e 5. and 6. are thought to have a straightforward generalization aswell,
but it has to be proven (limit from the massive Vertex Operator
approach).

e Finally, a generalization of the identity 7. for the projector P~ on
the singlet exists, but it only applies for the combined rqKZ equation
when calculating the residue.

» Snail Operator decouples only when taking the residue at
A12 = £(n + 1)k, k € N\{0}.

e The other residues at A\1» = £(n+ 1)(k + 3), k € N\{0}, have to be
considered seperately.

» There is a way to get a relation with the projector onto the
antifundamental representation for sl3, generally it is still a
problem.

» Possible to calculate the residues of D, in terms of D3 and D, for sl3
in mathematica using the result of Boos et al. 2018.
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However, the Snail Operator can still be defined in the same way as for sls.

\ 4

A

‘A

!

Figure 5: The Snail Operator with three loops.

e What are the composition factors in the tensor product of
fundamental and antifundamental representations of the Yangian?
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Snake modules and extended t-systems

Category of fin. dim. repr. of Y(sl,,1) is far from semisimple, but
there is a multiplicative notion of dominant highest (loop-)weights.
The fundamental evaluation modules have (multiplicative!) highest
l-weights Y;,, ie {1,...,n} =1/, ac C.
Any irreducible module is contained in the tensor product of
fundamental modules.
For any monomial m = MM/ ,ec Vi, in the fundamental |-weights,
there is a unique fin. dim. simple module L(m).
W.l.o.g. we can assume all loop parameters to be half integer
valued since

» any fusion is happening when the loop parameters differ by half

integers.

» we can recover any simple module by adjoining new parameters a € C
via the hopf algebra automorphism 7, and considering tensor products.

We can visualize these modules L(m) on the lattice | x Z =: X!
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Snake position and snakes

Let (i, k) € X. A point (i', k') is said to be in snake position with
respect to (i, k) iff k' — k > |i' —i| + 2.

The point (i/, k') is in minimal snake position to (i, k) iff k' — k is
equal to the lower bound.

We say that (i, k') € X is in prime snake position with respect to
(i k) ifF i +i > K — k> |i"—i] +2.

A finite sequence (i, k¢) (1 <t < M € N) of points in X is a snake iff
for all 2 <t < M, (i, k) is in snake position with respect to

(it—1, ke—1)-

It is a minimal (resp. prime) snake iff any two successive points are
in prime snake position to each other.
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Snake modules

e The simple module L(m) is a (minimal/prime) snake module iff
m= Hiw:l Yi. k. for some (minimal/prime) snake (i¢, kt)1<e<m-

e A snake module is prime iff its snake is prime.

e Prime snake modules are real.

A

ERN N AP wN AN
e &4 o o o e
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e For any two successive points define the neighbouring points by
<K (BU+k+i"—K), 3 +k—i"+K))) ktisk' =
ik 0 ktizk!—i
1] k+N+1—i=k' = N—1+i"

s {((;(f’ +k +i—k), 3"+ k' — i+ K))) kENFI-i>K —(N41-i")

e For any prime snake (i, kt+)1<k<m we define its neighbouring snakes
X=X k) and Y := Y, «) by concatenating its

neighbouring points.
|:L <H Yiukt>
t=1

= We have the extended t-system
M—-1 M M—-1
(i) ) )
t=1 t=2 t=2
+ [L < H Kt”(t)] [L ( nt,kt)} 7 (21)
(i,k)ex (i,k)eY
where the summands on the right hand side are classes of simple

1<k<M 1<k<M

modules.
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e Let's draw an example for A,.

p .
-~

FfwnNANDO

.

e The extended t-system includes the usual t-system.

e Note that the loop parameters of successive lines in the Snail
Operator are in minimal snake position.
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Conclusion

One can now proof the assertions
e The tensor product Viy(m).k @ Vinm+1).k+n+1 @ =+ @ Vinmr) k41(nt1) Of
I + 1 many antifundamental and fundamental modules has
Fibonacci(/ + 1) many composition factors, one of which is the
minimal snake module 5,(,£+1) = L(Hi:o YN(t-+m),k+t(n+1))»
where N(t) := {#iz\ﬁ".
e Using the ext. t-system above, one can derive the ext. t-systems

n+1
2

15 (1 — P SIS 1) = (S e — p "N + 1880~ p " 2]

which appear in the Snail Operator successively.

e Conjecture 2.1. Only the minimal snake module S) remains in the
Snail Operator - completely analogue to sls.
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Let's draw the snake in the snail for sl3 and (k = 4):

Az .. 0

W N A O
o
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Let the action of the density-Matrices D and D) be defined as

Dl,...,m()\lv sy >\n)(X1,...,m) = trl,...,m (Dl,...,m()‘la ceey Am)Xl,...,m) )
1 1
DY) O Am) X2 m) =tz (D) O Am) X2 ) -

Then one can write the two reduced qKZ-equations as

Do) L u- %1,)\2,...,)\,71) = AN, a2, Am) (D1 (A R, Am))
=tn (le(h = Am) - Ri2(A1 = A2)D1 o m(A1, A2, .o Am)(n + 1)P 5 (3.1)
Ra1(X2 — A1)+ Rmi(Am — A1), (3.2)
Droa— " A= AR il Am) (D) (a2, Am))
= trg (f?im(xl —Am) -+ Ria(a = 22D (A1 22, Am)(n+ 1P (3.3)
Roi(A2 = A1) - Rpz(Am — A1) s (3.4)

where (P;)? = Py is the projector onto the singlet in the tensor product

V @ V of the fundamental and antifundamental representation of sl,,.
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Proof of the projection relation 7. for sl5:

A A . A A A A A
A A A A A A A <
: i X >
po X = Po o P NP
A
A A A A A
et e

P Pt ‘/‘s »oopHA — ‘/Aw Pt Ms /»F'—t‘%
14 tt] R I R .
N I
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