Geometrical web models

Jesper L. Jacobsen 1,2,3

${ }^{1}$ 'Ecole Normale Supérieure, Paris (Laboratoire de Physique)
${ }^{2}$ Sorbonne Université, Paris (Faculté des Sciences et Ingénierie)
${ }^{3}$ Commisariat à l'Energie Atomique, Saclay (Institut de Physique Théorique)
SwissMAP Research Station in Les Diablerets
Integrability in condensed matter physics and quantum field theory
8 February 2023

Collaborators: Augustin Lafay, Azat Gainutdinov

From loops to webs

Loop models: what, why, how?

- Self-avoiding (open or closed) simple curves in two dimensions
- Polymers, level lines, domain walls, electron gases
- Lattice: Integrability, knot theory, cellular algebras, category theory
- Continuum limit: CFT, CLE, SLE

Definition and features

- Fix lattice of nodes and links
- Place bonds on some links so as to form set of loops
- Weight x per bond (+ maybe further local weights) and N per loop
- For $|N| \leq 2$, dense and dilute critical points $x_{c}^{ \pm}$
- Continuum limit of compactified free bosonic field (Coulomb gas) [Nienhuis, Di Francesco-Saleur-Zuber, Duplantier, Cardy ...]

Generalisation to webs

- Allow for branchings and bifurcations (with weights)
- Topological rules give weight to each connected web component
- Properties and possible critical behaviour?

Generalisation to webs

- Allow for branchings and bifurcations (with weights)
- Topological rules give weight to each connected web component
- Properties and possible critical behaviour?

Motivations for webs

- Domain walls in spin systems [Dubail-JJ-Saleur, Picco-Santachiara]
- Network models for topological phases [Kitaev, Levin-Wen, Fendley]
- Spiders in invariance theory [Kuperberg, Kim, Cautis-Kamnitzer-Morrison]

Thin and thick domain walls ($Q=3$ Potts model)

Questions (physics)

- How to define a "good" model of webs on the lattice?
- Fractal dimension of such domain walls (bulk / boundary)?
- Fractal dimension of an entire web component?
- Topological weight of web versus chromatic polynomial in $Q=3$?
- Web model away from this special point?

Questions (physics)

- How to define a "good" model of webs on the lattice?
- Fractal dimension of such domain walls (bulk / boundary)?
- Fractal dimension of an entire web component?
- Topological weight of web versus chromatic polynomial in $Q=3$?
- Web model away from this special point?

Questions (mathematics)

- Algebraic construction accounting for bifurcations?
- Loop model has $U_{-q}\left(\mathfrak{s l}_{2}\right)$ symmetry, can we get $U_{-q}\left(\mathfrak{s l}_{n}\right)$?

$\curvearrowright \frown$

Web model from Kuperberg A_{2} spider ($U_{-q}\left(\mathfrak{s l}_{3}\right)$ case)

Lattice considerations

- Hexagonal (honeycomb) lattice \mathbb{H} with nodes and links
- Configuration c by drawing bonds on some links, with constraints:
- Nodes have valence 0,2 or 3 : closed web with 3-valent vertices
- Each bond is oriented. Orientations conserved at 2-valent nodes
- Vertices are sources or sinks (all bonds point in or out)

Web model from Kuperberg A_{2} spider ($U_{-q}\left(\mathfrak{s l}_{3}\right)$ case)

Lattice considerations

- Hexagonal (honeycomb) lattice \mathbb{H} with nodes and links
- Configuration c by drawing bonds on some links, with constraints:
- Nodes have valence 0,2 or 3 : closed web with 3 -valent vertices
- Each bond is oriented. Orientations conserved at 2-valent nodes
- Vertices are sources or sinks (all bonds point in or out)

Each configuration can be seen as an abstract graph (vertices/edges). It is closed, planar, trivalent, bipartite. Fix an orientation (= 'up').

Rules for 'reducing' a configuration [kuperberg]

- Rotated and arrow-reversed diagrams not shown.
- A web component always has ≥ 1 polygon of degree 0,2 or 4 .
- The three rules thus evaluate any web to a number (its weight)

Define q-deformed numbers: $[k]_{q}=\frac{q^{k}-q^{-k}}{q-q^{-1}}$

Defining the web model

- Sum over configurations $c \in K$ on \mathbb{H}
- Local weights: x_{1} (up bond), x_{2} (down bond), y (sink), z (source)
- Partition function:

$$
Z_{\mathrm{K}}=\sum_{c \in K} x_{1}^{N_{1}} x_{2}^{N_{2}}(y z)^{N_{V}} w_{\mathrm{K}}(c)
$$

with N_{1} up-bonds, N_{2} down-bonds, and N_{V} vertex pairs

\mathbb{Z}_{3} spin model

Definition

- Spins $\sigma_{i} \in \mathbb{Z}_{3}:=\{0,1,2\}$ defined on triangular lattice $\mathbb{T}=\mathbb{H}^{*}$.
- Weight of link $(i j) \in \mathbb{T}$ defined as $x_{\sigma_{j}-\sigma_{i}}$, with j to the right of i.
- Normalise $x_{0}=1$. Weight x_{1} or x_{2} for a piece of domain wall.

\mathbb{Z}_{3} spin model

Definition

- Spins $\sigma_{i} \in \mathbb{Z}_{3}:=\{0,1,2\}$ defined on triangular lattice $\mathbb{T}=\mathbb{H}^{*}$.
- Weight of link $(i j) \in \mathbb{T}$ defined as $x_{\sigma_{j}-\sigma_{i}}$, with j to the right of i.
- Normalise $x_{0}=1$. Weight x_{1} or x_{2} for a piece of domain wall.

Note: vertex is a sink (source) if spins follow cyclically $0 \rightarrow 1 \rightarrow 2 \rightarrow 0$ upon turning anticlockwise (clockwise).

\mathbb{Z}_{3} spin model

Definition

- Spins $\sigma_{i} \in \mathbb{Z}_{3}:=\{0,1,2\}$ defined on triangular lattice $\mathbb{T}=\mathbb{H}^{*}$.
- Weight of link $(i j) \in \mathbb{T}$ defined as $x_{\sigma_{j}-\sigma_{i}}$, with j to the right of i.
- Normalise $x_{0}=1$. Weight x_{1} or x_{2} for a piece of domain wall.

Note: vertex is a sink (source) if spins follow cyclically $0 \rightarrow 1 \rightarrow 2 \rightarrow 0$ upon turning anticlockwise (clockwise).

Partition function

$$
Z_{\text {spin }}=3 \sum_{c \in K} x_{1}^{N_{1}} x_{2}^{N_{2}}
$$

- Equivalent to web model if $w_{\mathrm{K}}^{\prime}(c):=(y z)^{N_{V}} w_{\mathrm{K}}(c)=1$ for any c.

Equivalence at a special point:

$$
\begin{aligned}
q & =e^{i \frac{\pi}{4}} \\
y z & =2^{-\frac{1}{2}}
\end{aligned}
$$

Equivalence at a special point:

$$
\begin{aligned}
q & =e^{i \frac{\pi}{4}} \\
y z & =2^{-\frac{1}{2}} .
\end{aligned}
$$

Proof: Absorb y and z into the vertices. Use $[3]_{q}=1$ and $[2]_{q}=\sqrt{2}$. Then the rules become probabilistic:

Generalisation to $U_{-q}\left(\mathfrak{s l}_{n}\right)$ symmetry

Based on spider defined by [
 Pauis-KamizererMorison]

- Webs are still closed, oriented, planar, trivalent graphs. But not always bipartite as before.
- Edges carry an integer flow $i \in \llbracket 1, n-1 \rrbracket$.
- Generators conserve flow, or change by n due to 'tags':

- Flow labels fundamental representations of $U_{-q}\left(\mathfrak{s l}_{n}\right)$. Orientation distinguishes between dual or not.

Rules (mirrored and the arrow-reversed versions omitted):

$$
\begin{gathered}
k-k+ \\
k+1 \\
k+1
\end{gathered}
$$

Short summary of results

- Case $n=3$ gives back the Kuperberg web model.
- Case $n=2$ gives the well-known Nienhuis loop model.
- Special point $q=e^{i \frac{\pi}{n+1}}$ equivalent to \mathbb{Z}_{n} spin model.

Outlook this far

- \mathbb{Z}_{n} spin models known to be critical and integrable (with appropriate weights) [Fateev-Zamolodchikov]
- Therefore expect the special point to be critical for any n.
- Web models likely have larger critical manifold (vary q and x, y, z).
- Same remark for integrability.

Outlook this far

- \mathbb{Z}_{n} spin models known to be critical and integrable (with appropriate weights) [Fateev-Zamolodchikov]
- Therefore expect the special point to be critical for any n.
- Web models likely have larger critical manifold (vary q and x, y, z).
- Same remark for integrability.

To investigate criticality/integrability we wish a local formulation

- Analogous to vertex models for Potts and $\mathrm{O}(N)$ models.
- The locality enables us to define a transfer matrix / R-matrix.
- Good for numerical study and makes contact with integrability.
- Non-local TM also possible for loops, but seems difficult for webs.
- Vertex model defines equivalent ($n-1$ component) height model.
- Starting point for Coulomb gas construction and CFT identification.

Local reformulation for $U_{-q}\left(\mathfrak{s l}_{3}\right)$ web model

Basic idea

- Decorate bonds by extra degrees of freedom ($n=3$ colours).
- They allow to redistribute the web weight locally.
- Summing over colours gives back the undecorated model.
- Each link can now be in 7 different states.

Local reformulation for $U_{-q}\left(\mathfrak{s l}_{3}\right)$ web model

Basic idea

- Decorate bonds by extra degrees of freedom ($n=3$ colours).
- They allow to redistribute the web weight locally.
- Summing over colours gives back the undecorated model.
- Each link can now be in 7 different states.

Reminder for $n=2$ loop case

- Write $N=q+q^{-1}=[2]_{q}$.
- Orient each loop in two ways (clockwise, anticlockwise).
- Give $q^{-\frac{\theta}{2 \pi}}$ to a left-turn through angle θ.

Reminder for $n=2$ loop case

- Write $N=q+q^{-1}=[2]_{q}$.
- Orient each loop in two ways (clockwise, anticlockwise).
- Give $q^{-\frac{\theta}{2 \pi}}$ to a left-turn through angle θ.

Reminder for $n=2$ loop case

- Write $N=q+q^{-1}=[2]_{q}$.
- Orient each loop in two ways (clockwise, anticlockwise).
- Give $q^{-\frac{\theta}{2 \pi}}$ to a left-turn through angle θ.

Remark

Better to think of these two 'orientations' as colourings. The analogue for $n=3$ is the three colours. The orientations distinguish (for $n \geq 3$) fundamental and dual fundamental, but for $n=2$ the two coincide!

Basic idea for $n=3$

- Three colours RBG.
- Weight $q^{2}+1+q^{-2}=[3]_{q}$ for sum over (say) clockwise loop. Opposite phases for an anticlockwise loop (same sum). Set $x_{1}=x_{2}$ for convenience.

The 'tricky' part involving vertices

Proof for the 'digon' rule (2)

Proof for the 'digon' rule (2)

Proof for the 'square' rule (3)

Proof for the 'digon' rule (2)

Proof for the 'square' rule (3)

Other colours / arrangements of external legs work similarly.

Defining the transfer matrix

Built of pieces $t_{(1)}: \mathcal{H} \otimes \mathcal{H} \rightarrow \mathcal{H}$ and $t_{(2)}: \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{H}$, so that

$$
T=\left(\prod_{k=0}^{L-1} t_{2 k+1}\right)\left(\prod_{k=1}^{L-1} t_{2 k}\right)
$$

with $t=t_{(2)} t_{(1)}$. Write t_{i}, with i specifying the position.
Technically T is an intertwiner of the quantum group action.

- Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be a basis of the first fundamental V_{1} of $U_{-q}\left(\mathfrak{s l}_{3}\right)$.
- Let $\left\{w_{1}, w_{2}, w_{3}\right\}$ be a basis of the dual V_{1}^{*}, so that $w_{i}\left(v_{j}\right)=\delta_{i j}$.
- Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be a basis of the first fundamental V_{1} of $U_{-q}\left(\mathfrak{s l}_{3}\right)$.
- Let $\left\{w_{1}, w_{2}, w_{3}\right\}$ be a basis of the dual V_{1}^{*}, so that $w_{i}\left(v_{j}\right)=\delta_{i j}$.
- Relate $\left\{v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}, 1\right\}$ to the basis $\{|\uparrow\rangle,|\uparrow\rangle,|\uparrow\rangle,|\downarrow\rangle,|\downarrow\rangle,|\downarrow\rangle,| \rangle\}$ of coloured arrows.
Amounts to drawing each link vertically and providing the corresponding powers of q.
- Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be a basis of the first fundamental V_{1} of $U_{-q}\left(\mathfrak{s l}_{3}\right)$.
- Let $\left\{w_{1}, w_{2}, w_{3}\right\}$ be a basis of the dual V_{1}^{*}, so that $w_{i}\left(v_{j}\right)=\delta_{i j}$.
- Relate $\left\{v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}, 1\right\}$ to the basis $\{|\uparrow\rangle,|\uparrow\rangle,|\uparrow\rangle,|\downarrow\rangle,|\downarrow\rangle,|\downarrow\rangle,| \rangle\}$ of coloured arrows.
Amounts to drawing each link vertically and providing the corresponding powers of q.
- Draw the diagrams of all transitions in $t_{(1)}$ and $t_{(2)}$. For instance:

- Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be a basis of the first fundamental V_{1} of $U_{-q}\left(\mathfrak{s l}_{3}\right)$.
- Let $\left\{w_{1}, w_{2}, w_{3}\right\}$ be a basis of the dual V_{1}^{*}, so that $w_{i}\left(v_{j}\right)=\delta_{i j}$.
- Relate $\left\{v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}, 1\right\}$ to the basis $\{|\uparrow\rangle,|\uparrow\rangle,|\uparrow\rangle,|\downarrow\rangle,|\downarrow\rangle,|\downarrow\rangle,| \rangle\}$ of coloured arrows.
Amounts to drawing each link vertically and providing the corresponding powers of q.
- Draw the diagrams of all transitions in $t_{(1)}$ and $t_{(2)}$. For instance:

- Let us have a look at just the first term!

- Express each diagram in terms of the elementary blocks (maps)

Their expressions follow from quantum group considerations.

- Express each diagram in terms of the elementary blocks (maps)

Their expressions follow from quantum group considerations.

- The first term is the composition of coev and w :

- In the bases $\{|\uparrow \uparrow\rangle,|\uparrow \uparrow\rangle,|\uparrow \uparrow\rangle,|\uparrow \uparrow\rangle,|\uparrow \uparrow\rangle,|\uparrow \uparrow\rangle,|\uparrow \uparrow\rangle,|\uparrow \uparrow\rangle,|\uparrow \uparrow\rangle\}$ of $V_{1} \otimes V_{1}$ and $\{|\downarrow\rangle,|\downarrow\rangle,|\downarrow\rangle\}$ of V_{1}^{*}, we finally get

$$
\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & q^{\frac{1}{6}} & 0 & q^{-\frac{1}{6}} & 0 \\
0 & 0 & q^{\frac{1}{6}} & 0 & 0 & 0 & q^{\frac{1}{6}} & 0 & 0 \\
0 & q^{\frac{1}{6}} & 0 & q^{-\frac{1}{6}} & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

- Looks familiar?
- In the bases $\{|\uparrow \uparrow\rangle,|\uparrow \uparrow\rangle,|\uparrow \uparrow\rangle,|\uparrow \uparrow\rangle,|\uparrow \uparrow\rangle,|\uparrow \uparrow\rangle,|\uparrow \uparrow\rangle,|\uparrow \uparrow\rangle,|\uparrow \uparrow\rangle\}$ of $V_{1} \otimes V_{1}$ and $\{|\downarrow\rangle,|\downarrow\rangle,|\downarrow\rangle\}$ of V_{1}^{*}, we finally get

$$
\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & q^{\frac{1}{6}} & 0 & q^{-\frac{1}{6}} & 0 \\
0 & 0 & q^{\frac{1}{6}} & 0 & 0 & 0 & q^{\frac{1}{6}} & 0 & 0 \\
0 & q^{\frac{1}{6}} & 0 & q^{-\frac{1}{6}} & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

- Looks familiar?
- Hint:

Summary of this technical part

- The diagrams are intertwiners of $U_{-q}\left(\mathfrak{s l}_{3}\right)$.
- We can compute all elements of T in this way.
- We are now ready to diagonalise T numerically.

Phase diagram of the web model

- More efficient to use the geometry

- Connection to the (effective) central charge of CFT:

$$
\begin{aligned}
& f_{L}=-\frac{2}{\sqrt{3} L} \log \left(\Lambda_{\max }\right) \\
& f_{L}=f_{\infty}-\frac{\pi c_{\mathrm{eff}}}{6 L^{2}}+o\left(\frac{1}{L^{2}}\right)
\end{aligned}
$$

$c_{\text {eff }}$ for $q=e^{i \pi / 5}$ in the (\sqrt{x}, y) plane

- Based on sizes $L=5$ and $L=6$.
- Coulomb gas prediction: dilute $c=\frac{4}{5}$ and dense $c=\frac{6}{5}$ phases.

Zoom of the interesting region

Coulomb gas predictions

Set $q=\mathrm{e}^{i \gamma}$ with $\gamma \in[0, \pi]$.
CG of two bosons compactified on the root lattice of $\mathrm{s} / 3$
Coupling constant $g=1 \pm \frac{\gamma}{\pi}$ in dilute (+) or dense (-) phase.
Central charge $c=2-24 \frac{(g-1)^{2}}{g}$.

Coulomb gas predictions

Set $q=\mathrm{e}^{i \gamma}$ with $\gamma \in[0, \pi]$.
CG of two bosons compactified on the root lattice of $\mathrm{S} / 3$
Coupling constant $g=1 \pm \frac{\gamma}{\pi}$ in dilute (+) or dense (-) phase.
Central charge $c=2-24 \frac{(g-1)^{2}}{g}$.

Example I: $\gamma=\frac{\pi}{5}$ as in numerical figures

Coupling constant $g=\frac{6}{5}$ (dilute) or $g=\frac{4}{5}$ (dense).
Central charge $c=\frac{6}{5}$ (dilute) or $c=\frac{4}{5}$ (dense).

Coulomb gas predictions

Set $q=\mathrm{e}^{i \gamma}$ with $\gamma \in[0, \pi]$.
CG of two bosons compactified on the root lattice of $\mathrm{S} / 3$
Coupling constant $g=1 \pm \frac{\gamma}{\pi}$ in dilute $(+)$ or dense (-) phase.
Central charge $c=2-24 \frac{(g-1)^{2}}{g}$.

Example I: $\gamma=\frac{\pi}{5}$ as in numerical figures

Coupling constant $g=\frac{6}{5}$ (dilute) or $g=\frac{4}{5}$ (dense).
Central charge $c=\frac{6}{5}$ (dilute) or $c=\frac{4}{5}$ (dense).

Example II: $\gamma=\frac{\pi}{4}$ as at special point

Coupling constant $g=\frac{5}{4}$ (dilute) or $g=\frac{3}{4}$ (dense).
Central charge $c=\frac{4}{5}$ (dilute) or $c=0$ (dense).
Corresponds to $Q=3$ Potts model at $T=T_{\mathrm{c}}$ or $T=\infty$.

What about integrability?

- The $n=2$ model (Nienhuis loops) is integrable in both the dilute and dense phases [Baxter 1986-87]

What about integrability?

- The $n=2$ model (Nienhuis loops) is integrable in both the dilute and dense phases [Baxter 1986-87]
- For webs, we study three different rank-2 models [Kuperberg]:
- A_{2} web model $\left(Z_{\mathbb{Z}_{3}}=3 Z_{A_{2}}\right.$ at $\left.q=e^{i \pi / 4}\right)$

- G_{2} web model $\left(Z_{\mathbb{Z}_{3}}=3 Z_{G_{2}^{\prime}}\right.$ at $q=e^{i \pi / 6}$, with only single lines)

- B_{2} web model $\left(Z_{\mathbb{Z}_{4}}=4 Z_{B_{2}}\right.$ at $\left.q=e^{i \pi / 4}\right)$

- They satisfy distinct spider relations and lead to models on \mathbb{H}.

Intertwiners

- Intertwining maps for cups, caps and trivalent vertices constructed as before, by invariance considerations.
- For A_{2} : 7-dim representation $V_{1} \oplus V_{2} \oplus \mathbb{C}$, where $V_{1}\left(V_{2}\right)$ are 3-dim fundamental representations of $U_{q}\left(A_{2}\right)$ of highest weight $w_{1}\left(w_{2}\right)$.
- For G_{2} : 8-dim representation $V \oplus \mathbb{C}$, where V is 7 -dim fundamental representation of $U_{q}\left(G_{2}\right)$ of highest weight w_{1}.
- For B_{2} : 10-dim representation $V_{1} \oplus V_{2} \oplus \mathbb{C}$, where $V_{1}\left(V_{2}\right)$ is 4-dim (5-dim) fundamental repr. of $U_{q}\left(B_{2}\right)$ of highest weight $w_{1}\left(w_{2}\right)$.

Integrable $\check{R}(u, v)$: General strategy

- Test case A_{1} (dilute loop model), then web cases A_{2}, G_{2}, B_{2}.
- Guess quantum affine algebra $U_{t}\left(\tilde{X}_{n}^{(k)}\right)$ that contains as a Hopf subalgebra the non-affine quantum group $U_{q}\left(X_{m}\right)$ of the web.
- In practice, identify affine Dynkin diagram $\tilde{X}_{n}^{(k)}$ that reduces to the simple Dynkin diagram X_{m} upon erasing one node.

$U_{t}\left(\tilde{X}_{n}^{(k)}\right)$	$U_{q}\left(X_{m}\right)$	$\tilde{X}_{n}^{(k)}, X_{m}$
$U_{t}\left(A_{2}^{(2)}\right)$	$U_{t^{4}}\left(A_{1}\right)$	
$U_{t}\left(G_{1}^{(2)}\right)$	$U_{t^{3}}\left(A_{2}\right)$	
$U_{t}\left(D_{4}^{(3)}\right)$	$U_{t}\left(G_{2}\right)$	${ }_{(0)}^{\Rightarrow}=$
$U_{t}\left(A_{4}^{(2)}\right)$	$U_{t^{2}}\left(B_{2}\right)$	

- Find an irreducible evaluation representation $\left(\rho_{u}, V_{u}\right), u \in \mathbb{C}$ of $U_{t}\left(\tilde{X}_{n}^{(k)}\right)$ that decomposes under $U_{q}\left(X_{m}\right)$ as $V_{u}=V$, the u-independent local space of states of the web model.
- Then (following Jimbo) solve the equation for $K(u, v)$:

$$
\check{R}(u, v)\left(\rho_{u} \otimes \rho_{v}\right)(a)=\left(\rho_{v} \otimes \rho_{u}\right)(a) \check{R}(u, v), \quad a \in U_{t}\left(\tilde{X}_{n}^{(k)}\right)
$$

- Since $\rho_{U} \otimes \rho_{v}$ is irreducible, this admits a unique solution, up to a multiplicative constant.
- Since $U_{t}\left(\tilde{X}_{n}^{(k)}\right)$ has a universal R-matrix, $\check{R}(u, v)$ satisfies the spectral-parameter dependent YBE.
- Expanding $\check{R}(u, v)$ as a sum of intertwiners of $U_{q}\left(X_{m}\right)$ from $V \otimes V$ to itself, we get a linear system for the coefficients.
- Finally, identify values $\left(u^{*}, v^{*}\right)$ of (u, v) so that only web diagrams that can appear in the transfer matrix on \mathbb{H} have non-zero coefficients.

Integrable $\check{R}(u, v)$: Results

- For A_{1} we correctly recover Nienhuis' $A_{2}^{(2)}$ dilute model (9 intertwiners).
- For A_{2} webs, solution with 33 intertwiners.
- For G_{2} webs, solution with 15 intertwiners.
- For B_{2} webs, solution with 43 intertwiners.

Summary

- Web models generalise the $U_{-q}\left(\mathfrak{s l}_{2}\right)$ loop model to $U_{-q}\left(\mathfrak{s l}_{n}\right)$.
- Geometrical content with applications to \mathbb{Z}_{n} spin interfaces.
- Dense and dilute critical points for $q=e^{i \gamma}$ and $\gamma \in[0, \pi]$.

Summary

- Web models generalise the $U_{-q}\left(\mathfrak{s l}_{2}\right)$ loop model to $U_{-q}\left(\mathfrak{s l}_{n}\right)$.
- Geometrical content with applications to \mathbb{Z}_{n} spin interfaces.
- Dense and dilute critical points for $q=e^{i \gamma}$ and $\gamma \in[0, \pi]$.

More developments

- Coulomb gas description and fractal dimension of defects
- Statistical models for all rank-2 spiders: A_{2}, G_{2} and B_{2}
- Corresponding integrable models constructed, but their properties need to be studied.

Summary

- Web models generalise the $U_{-q}\left(\mathfrak{s l}_{2}\right)$ loop model to $U_{-q}\left(\mathfrak{s l}_{n}\right)$.
- Geometrical content with applications to \mathbb{Z}_{n} spin interfaces.
- Dense and dilute critical points for $q=e^{i \gamma}$ and $\gamma \in[0, \pi]$.

More developments

- Coulomb gas description and fractal dimension of defects
- Statistical models for all rank-2 spiders: A_{2}, G_{2} and B_{2}
- Corresponding integrable models constructed, but their properties need to be studied.

Further possibilities

- SLE-like description of branching curves?

