Hilbert space fragmentation in integrable systems

A. Hutsalyuk
Eötvös Loránd University
Les Diablerets

February 6, 2023

Thermalization and integrability

- The observable O thermalizes if after some relaxation time, the average expectation value of this observable agrees with the microcanonical expectation value For the initial state $\left|\psi_{0}\right\rangle$ and (an arbitrary) operator O evolution is provided by

$$
\begin{gathered}
|\psi(t)\rangle=\sum_{m} C_{m} e^{-i E_{m} t}|m\rangle, \quad C_{m}=\left\langle m \mid \psi_{0}\right\rangle \\
\langle\psi(t)| \hat{O}|\psi(t)\rangle=\sum_{m, n} C_{m}^{*} C_{n} e^{i\left(E_{m}-E_{n}\right) t} O_{m n}=\sum_{m}\left|C_{m}\right|^{2} O_{m m}+\sum_{n \neq m} C_{m}^{*} C_{n} e^{i\left(E_{m}-E_{n}\right) t} O_{m n}
\end{gathered}
$$

i. How to proceed to a microcanonical ensemble in first term (time independent!)
ii. What to do with states that are exponentially close to each other in the second term

ETH

- Description of a thermalization relies on the eigenstate thermalization hypothesis (ETH) J. M. Deutsch (1991) Phys. Rev. A 43 2046; M. Srednicki (1994) Phys. Rev. E 50888
- ETH could be considered as an ansatz for matrix elements

$$
O_{m n}=\delta_{m n} O(\bar{E})+e^{-S(\bar{E})} f_{O}(\bar{E}, \omega) R_{m n}, \quad \omega=E_{n}-E_{m}, \quad \bar{E}=\frac{E_{m}+E_{n}}{2}
$$

- $S(E)$ is an entropy
- f_{O} is a smooth function (operator dependent); $\overline{R_{m n}^{2}}=1, \overline{\left|R_{m n}\right|^{2}}=1$
- $O(\bar{E})$ coincides with an expectation value of the microcanonical ensemble Using ETH it is possible to proceed to averaging with a diagonal ensemble $\rho_{D E}$

$$
\langle O\rangle=\lim _{t_{0} \rightarrow \infty} \frac{1}{t_{0}} \int_{0}^{t_{0}} d t O(t)=\sum_{m}\left|C_{m}\right|^{2} O_{m m}=\operatorname{Tr}\left[\rho_{\mathrm{DE}} \mathrm{O}\right]
$$

Integrable system, degeneracies and ETH

- In the integrable systems they are replaced by Generalized Gibbs ensemble (GGE)

$$
\rho=\exp (-\beta H) \longrightarrow \exp \left(-\sum \beta_{k} H_{k}\right)
$$

M. Rigol et. al. (2007) Phys. Rev. Lett. 98 050405; P. Calabrese et. al. (2011) Phys. Rev. Lett. 106, 227203; (2012) J. Stat. Mech. P07022

- Very successful for a lot of applications
- Note: only weak ETH is satisfied: an (exponentially!) small fraction of eigenstates does not obey the ETH, they have expectation values significantly different from the microcanonical ensemble
- However the complete breakdown of ETH could be expected in case of degeneracy!

Folded-XXZ via crystal limit

$$
H=Q_{4}=-\frac{1}{4} \sum_{j=1}^{L}\left(1+\sigma_{j}^{z} \sigma_{j+3}^{z}\right)\left(\sigma_{j+1}^{+} \sigma_{j+2}^{-}+\sigma_{j+1}^{-} \sigma_{j+2}^{+}\right)
$$

Could be derived from XXZ chain using the crystal limit (note: Q_{2} is nothing but Ising model)

$$
Q_{k}=\lim _{\Delta \rightarrow \infty} \frac{\tilde{Q}_{k}}{\Delta^{[k / 2]}}
$$

where \tilde{Q}_{k} is k th integral of motion of XXZ chain Earlier this model was discovered (at least...) Z.-C. Yang, F. Liu, A. V. Gorshkov, T. ladecola, Phys. Rev. Lett. 124, 207602 (2020)
L. Zadnik, M. Fagotti, SciPost Phys. Core 4, 10, (2021); L. Zadnik, K. Bidzhiev, M. Fagotti, SciPost Phys. 10, 99 (2021)

Properties

- Crystal limit models are (at least supposedly) simpler than the original one
- Crystal limit automatically provides us with Hamiltonians that are integrable
- Limit is known for the Hamiltonian only. It is not clear how to generalize it for the Lax operator and R-matrix (?)
- It is naturally to expect a large degree of degeneracy in the spectrum since the crystal limit also affects Bethe equations

Bethe ansatz solution

Bethe equations naturally follows from the crystal limit of ordinary XXZ equations

$$
e^{i p_{j, n} L} \prod_{\substack{m, k \\(j, n) \neq(k, m)}} S_{n, m}\left(p_{j, n}-p_{k, m}\right)=1 \quad \longrightarrow e^{i p_{j, 1}\left(L-N_{1}-2 N_{s}\right)}=(-1)^{N_{1}-1} e^{-i P_{1}-2 i P_{s}}
$$

s is a number of strings, N_{1} - number of particles
There are "particles" (and correspondingly scattering matrices) of two types

$$
S_{1,1}(p, k)=-e^{-i(p-k)}, \quad S_{1, n}(p, k)=e^{-2 i(p-k)} \quad \text { the last does not depend on } n!
$$

In this picture strings could be understood as "domain walls". The last are not dynamical on their own: in the absence of particles they lead to frozen configuration and exponentially degenerate Hilbert states

Domain walls (DW) dynamic

Scattering of a particle with a DW. As the result DW gets replaced by 2 sites to the left, and the trajectory of the particle receives a displacement of 1 site to the right

Dual transformation

Bond-site transformation

$$
\begin{array}{lll}
|\circ\rangle_{j} & \text { if } & \sigma_{j}^{z} \sigma_{j+1}^{z}=1 \\
|\bullet\rangle_{j} & \text { if } & \sigma_{j}^{z} \sigma_{j+1}^{z}=-1
\end{array}
$$

We can interpret $|0\rangle$ as the up spin, and $|\bullet\rangle$ as the down spin
Note : transformation is good defined in boundary case. Some problems in a periodic case (we neglect it since TDL is object of interest at the very end)
Note: Q_{1} becomes non-local

$$
Q_{1}=\frac{1}{2} \sum_{j=1}^{L-1}\left[1-\prod_{k=1}^{j} \sigma_{j}^{z}\right]
$$

Charges transformation (note: Q_{4} is 3 -site now)

$$
\begin{aligned}
Q_{2} & \rightarrow \sum_{j=1}^{L-1} \sigma_{j}^{z} \\
Q_{3} & \rightarrow i \sum_{j} \sigma_{j}^{-} P_{j+1}^{\bullet} \sigma_{j+2}^{+}-\sigma_{j}^{+} P_{j+1}^{\bullet} \sigma_{j+2}^{-} \\
Q_{4} & \rightarrow \sum_{j} \sigma_{j}^{-} P_{j+1}^{\bullet} \sigma_{j+2}^{+}+\sigma_{j}^{+} P_{j+1}^{\bullet} \sigma_{j+2}^{-}
\end{aligned}
$$

here $P^{\bullet}=\left(1-\sigma^{z}\right) / 2$. The only non-zero elements of $Q s$ are

$$
|\circ \bullet \bullet\rangle \rightarrow|\bullet \bullet \circ\rangle, \quad|\bullet \bullet \circ\rangle \rightarrow|\circ \bullet \bullet\rangle
$$

Thus Q_{3}, Q_{4}, etc, move only double $\bullet \bullet$. Single \bullet remains invariant!

Overlaps in folded-XXZ

Define set of states

$$
\left|x_{1}, \ldots, x_{N}\right\rangle=\sigma_{x_{1}}^{-} \ldots \sigma_{x_{N}}^{-}|\emptyset\rangle
$$

restriction $1 \leq x_{1}<\cdots<x_{N} \leq L$ is imposed to avoid double counting Specific Neél state with N particles in a volume $L=3 N$

$$
\left|\Psi_{0}^{\prime}\right\rangle=|3,6,9, \ldots\rangle
$$

From the limit of Slavnov's determinant (overlap of XXZ Bethe vectors)

$$
\left\langle\Psi_{0}^{\prime} \mid \boldsymbol{p}\right\rangle=\operatorname{det}_{j k} e^{i p_{j}(2 k+1)}
$$

On-shell overlap with initial state

We consider the initial state

$$
\left|\Psi_{0}\right\rangle=\frac{1+U+U^{2}}{\sqrt{3}}\left|\Psi_{0}^{\prime}\right\rangle
$$

where U is the one-site cyclic shift operator In the zero momentum sector the Bethe equations are

$$
e^{i 2 N p_{j}}=-1, \quad j=1, \ldots, N
$$

$L=3 N, N$ assumed to be even for simplicity
The overlaps can be expressed simply as

$$
\left|\left\langle\Psi_{0} \mid \boldsymbol{p}\right\rangle\right|^{2}=\prod_{j<k}\left|e^{i 2 p_{j}}-e^{i 2 p_{k}}\right|^{-2} \rightarrow N^{N}
$$

Solvable quench dynamics

Form factor sum could be written as

$$
\langle\mathcal{O}(t)\rangle=\sum_{\boldsymbol{p}, \boldsymbol{k}} \frac{\left\langle\Psi_{0} \mid \boldsymbol{p}\right\rangle\langle\boldsymbol{p}| \mathcal{O}|\boldsymbol{k}\rangle\left\langle\boldsymbol{k} \mid \Psi_{0}\right\rangle}{\langle\boldsymbol{p} \mid \boldsymbol{p}\rangle\langle\boldsymbol{k} \mid \boldsymbol{k}\rangle} e^{-i\left(E_{k}-E_{\mathrm{p}}\right) t}
$$

Emptiness formation probability (EFP)

$$
\mathbb{E}_{\ell}(x)=\prod_{j=1}^{\ell} \frac{1+\sigma_{x-1+j}^{z}}{2}
$$

- Form factors should be computed $\langle\boldsymbol{p}| \mathcal{O}|\boldsymbol{k}\rangle$
- Summation over $\boldsymbol{p}, \boldsymbol{k}$ should be performed

Form factors

N. M. Bogoliubov, C. L. Malyshev, Theor. Math. Phys. 169, 1517 (2011)

$$
\begin{aligned}
& \langle\boldsymbol{p}| \mathbb{E}_{\ell}(x)|\boldsymbol{k}\rangle=\prod_{j \leq k} \frac{1}{\left(e^{i u_{j}^{C}}-e^{i u_{k}^{C}}\right)\left(e^{i u_{j}^{B}}-e^{i u_{k}^{B}}\right)} \operatorname{det} \mathcal{T}, \\
& \mathcal{T}_{j j}=(N-L+\ell-1) e^{-2 i k_{j}}, \quad u_{j}^{C}=u_{k}^{B}, \\
& \mathcal{T}_{j k}=e^{i(\ell-1)\left(u_{j}^{B}+u_{k}^{C}\right)} \frac{\sin \left((\ell-1)\left(u_{j}^{B}-u_{k}^{C}\right)\right)}{\sin \left(u_{j}^{B}-u_{k}^{C}\right)}, \quad u_{j}^{C} \neq u_{k}^{B} .
\end{aligned}
$$

For diagonal part of \mathcal{T} the rank is given by the number of coinciding elements in the sets \bar{u}^{C}, \bar{u}^{B} ! This put very heavy restrictions on the summation

After simple summation over form factors the exact quench for \mathbb{E}_{3} is given by

$$
\langle\psi(t)| \mathbb{E}_{3}(x)|\psi(t)\rangle=\frac{1}{6}-\frac{1}{6}\left(\frac{1}{N} \sum_{a} \cos \left(2 \cos \left(c_{a}\right) t\right)\right)^{2}-\frac{1}{6}\left|\frac{1}{N} \sum_{a} \sin \left(2 \cos \left(c_{a}\right) t\right) e^{i c_{a}}\right|^{2}
$$

$c_{a}=\pi(2 a-1) /(2 N), a=1, \ldots, N$. In the thermodynamic limit the last expression is

$$
\langle\psi(t)| \mathbb{E}_{3}(x)|\psi(t)\rangle=\frac{1}{6}\left[1-\left(J_{0}(2 t)\right)^{2}-\left(J_{1}(2 t)\right)^{2}\right]
$$

Thermalization in a fragmented Hilbert space

Problem of thermalization from the initial state $\left|\psi_{0}\right\rangle$

$$
\langle\mathcal{O}(t)\rangle=\sum\left\langle\Psi_{0} \mid a\right\rangle\langle a| \mathcal{O}|b\rangle\left\langle b \mid \Psi_{0}\right\rangle e^{-i\left(E_{b}-E_{a}\right) t}
$$

We denote by E_{a} the energy eigenvalues, and by a further discrete index j the states $|a, j\rangle$ in the degenerate eigenspaces. Then

$$
\lim _{t \rightarrow \infty}\langle\mathcal{O}(t)\rangle=\sum_{a} \sum_{j, k}\left\langle\Psi_{0} \mid a, j\right\rangle\langle a, j| \mathcal{O}|a, k\rangle\left\langle a, k \mid \Psi_{0}\right\rangle .
$$

We choose the initial state and the operator as

$$
\left|\Psi_{0}\right\rangle=\otimes_{j=1}^{L} \frac{1}{\sqrt{2}}\binom{1}{1}, \quad D_{k}=\prod_{j=1}^{k} \sigma_{j}^{-}
$$

Breakdown of GGE: Persistent oscillation

GE (GGE) predicts the relaxation to a stationary equilibrium state. Persistent oscillations that we observe for above operator clearly violate this hypothesis

Figure: Simulation is done by time evolved block decimation, the maximal bond dimension is $\chi_{\max }=1000$, the Trotter time step is $\delta t=0.01$. The oscillation of the expectation value with a frequency directly given by h.

$T \bar{T}$-deformations in lattice models

For any pair of extensive charges Q_{α} and Q_{β} a $T \bar{T}$-like deformation could be defined. To first order the deformation consists in modifying the Hamiltonian H as

$$
H^{\prime}=H+\kappa\left(J_{\alpha}(x) q_{\beta}(x)-q_{\alpha}(y) J_{\beta}(x+1)\right)+\mathcal{O}\left(\kappa^{2}\right),
$$

here $Q_{\alpha}=\sum_{x} q_{\alpha}(x), J_{\alpha}=\sum_{x} J_{\alpha}(x)$ satisfy the continuity equation

$$
\partial_{t} q_{\alpha}(x, t)+\partial_{x} J_{\alpha}(x, t)=0
$$

Then the two-particle scattering matrix $S(p, k)=e^{i \delta(p, k)}$ gets deformed as

$$
\delta^{\prime}(p, k)=\delta(p, k)+\kappa\left(h_{\alpha}(p) h_{\beta}(k)-h_{\alpha}(k) h_{\beta}(p)\right)+\mathcal{O}\left(\kappa^{2}\right)
$$

where $h_{\alpha, \beta}$ are the one-particle eigenvalue functions of the charges Q_{α} and Q_{β}

$T \bar{T}$-deformations in folded XXZ

Usual $T \bar{T}$: energy and momentum

We choose instead: particle number and momentum
This case is called hard-rod deformation

$$
S(p, k) \rightarrow S(p, k) \exp (i \kappa(p-k))
$$

Folded-XXZ case

$$
S(p, k)=-e^{i(p-k)}
$$

thus $S(p, k)=-1(\mathrm{XX}$ model $), \kappa=1$ and folded- XXZ is equal to the hard-rod deformation of $\mathbf{X X}$ model
Note: rigorously speaking $T \bar{T}$ is not defined on the lattice since there is no momentum operator on lattice which would be ab extensive local charge

Hard-rod XXZ

We can consider following projection operators

$$
P^{\circ}=\frac{1+\sigma^{z}}{2}, \quad P^{\bullet}=\frac{1-\sigma^{z}}{2} .
$$

Then ordinary XXZ spin chain could be written as

$$
h_{j, j+1}=\sigma_{j}^{-} \sigma_{j+1}^{+}+\sigma_{j}^{+} \sigma_{j+1}^{-}-\Delta\left(P_{j}^{\circ} P_{j+1}^{\bullet}+P_{j}^{\bullet} P_{j+1}^{\circ}\right), \quad H=2 \sum_{j} h_{j, j+1}
$$

Hard-rod deformation of $X X Z$ with core of length ℓ is given by

$$
H=\sum_{j}\left[h_{j, j+\ell} \prod_{k=1}^{\ell-1} P_{j+k}^{\bullet}\right] .
$$

Properties

$$
H=\sum_{j}\left[h_{j, j+\ell} \prod_{k=1}^{\ell-1} P_{j+k}^{\bullet}\right] .
$$

- $\ell=1$ is ordinary $X X Z$ chain
$\bullet \ell=2$ with $\Delta=0$ is a folded-XXZ in a "dual representation" (thus folded-XXZ could be called a hard-rod deformed $X X$)
- $\ell=2$ with $\Delta=0$ coincides with a Bariev model at $U=1$

$$
H=\sum_{j}\left[\sigma_{j}^{-} \sigma_{j+2}^{+}+\sigma_{j}^{+} \sigma_{j+2}^{-}\right] \frac{1-U \sigma_{j+1}^{z}}{2},
$$

Wave function is given by

$$
\begin{gathered}
|\Psi\rangle=\sum_{x_{1} \leq x_{2} \leq \ldots x_{N}^{\prime}} \sum_{\mathcal{P} \in S_{N^{\prime}}} e^{i \sum_{j=1}^{N^{\prime}} q_{\mathcal{P}_{j}} x_{j}} \prod_{j \leq k} S_{a_{j}, a_{k}}\left(q_{j}, q_{k}\right) \prod_{j=1}^{N^{\prime}} A_{x_{j}}^{a_{\mathcal{P}_{j}}}|\Omega\rangle \\
A_{j}^{a}= \begin{cases}\sigma_{j}^{-} & \text {if } a=1 \\
\sigma_{j}^{-} \sigma_{j+1}^{-} & \text {if } a=2 .\end{cases}
\end{gathered}
$$

Here scattering matrices are

$$
\begin{aligned}
& S_{1,1}\left(q_{1}, q_{2}\right)=-e^{-i\left(q_{1}-q_{2}\right)} \\
& S_{2,2}\left(q_{1}, q_{2}\right)=e^{-i\left(q_{1}-q_{2}\right)} S_{X X Z}\left(q_{1}, q_{2}\right) \\
& S_{1,2}\left(q_{1}, q_{2}\right)=e^{-i\left(q_{1}-2 q_{2}\right)}
\end{aligned}
$$

where $S_{X X Z}$ is an ordinary scattering matrix of magnons in $X X Z$ chains

Yang-Baxter integrability:

$$
\begin{aligned}
R_{12}\left(\lambda_{1}, \lambda_{2}\right) R_{23}\left(\lambda_{2}, \lambda_{3}\right) R_{13}\left(\lambda_{1}, \lambda_{3}\right) & =R_{13}\left(\lambda_{1}, \lambda_{3}\right) R_{23}\left(\lambda_{2}, \lambda_{3}\right) R_{12}\left(\lambda_{1}, \lambda_{2}\right) \\
R_{B, A}(\nu, \mu) \mathcal{L}_{B, j}(\nu) \mathcal{L}_{A, j}(\mu) & =\mathcal{L}_{A, j}(\mu) \mathcal{L}_{B, j}(\nu) R_{B, A}(\nu, \mu)
\end{aligned}
$$

- Lax operator could be derived (rather guessed) from the set of condition (self-commutativity of the transfer matrix $[t(u), t(v)]=0$ could be checked on a final chain)

$$
\check{\mathcal{L}}_{a, b, j}(u)=\check{\mathcal{L}}_{a, j}^{(X X Z)}(u) P_{b}^{\bullet}+P_{b}^{\circ} \quad \quad \mathcal{L}_{a, b, j}(u)=\mathcal{P}_{a, j} \mathcal{P}_{b, j} \check{\mathcal{L}}_{a, b, j}(u)
$$

3rd index denotes quantums space, the 1st and the 2nd - auxiliary spaces (i.e. $A, B=a \otimes b$)

- R-matrix could be fixed then from the $R L L$-relation
- Yang-Baxter equation provides the final check (!) for the R-matrix

$$
\begin{aligned}
& R(\lambda, \mu) \\
& =\left(\begin{array}{cccc}
E_{11}+E_{44} \rho_{1} & E_{21}+E_{43} \rho_{2} & E_{31} & E_{41} \rho_{5} \\
E_{12} & E_{22}+E_{44} \rho_{6} & E_{32} & E_{42} \rho_{5} \\
E_{13}+E_{24} \rho_{2} & E_{23} \rho_{3} & E_{33}+E_{44 \rho_{6}} & E_{21} \rho_{4}+E_{43} \rho_{5} \\
E_{14} \rho_{5} & E_{13} \rho_{4}+E_{24} \rho_{5} & E_{34} \rho_{5} & E_{11} \rho_{7}+\left(E_{22}+E_{33}\right) \rho_{6}+E_{44}
\end{array}\right)
\end{aligned}
$$

- Matrix has a non-difference form
- Diagonal elements (Cartans) are "degenerated" (Gauss decomposition issues?)
- Rational limit ($\Delta=1$)

$$
\begin{aligned}
& \check{R}_{12,34}(u, v)=1+\frac{u-v}{u-v+1}\left(h_{234}+h_{123}+\frac{u}{u+1} h_{234} h_{123}+\frac{v}{v-1} h_{123} h_{234}\right) \\
& \check{\mathcal{L}}_{a, b, j}(u)=\check{\mathcal{L}}_{a, j}^{(X X X)}(u) P_{b}^{\bullet}+P_{b}^{\circ}, \quad \quad \check{R}_{a b, c d}(u)=\mathcal{P}_{a, c} \mathcal{P}_{b, d} R_{a b, c d}(u)
\end{aligned}
$$

Conclusions

- Folded-XXZ is only one model in a big family of hard-rod models
- Moreover, each given R-matrix assume existence of (in general infinite) family of Lax operators (so, infinite family of models)
- Folded-XXZ Hamiltonian arises as a crystal limit of usual XXZ (algebra symmetry $\mathfrak{g l}(2))$. Immediate generalization for higher rank algebra related cases turns out to be possible (crystal limit in Perk-Schultz models)
- All of such models posses quite degenerate spectrum
- RLL expansion of these models in terms of Drinfeld currents is quite challenging task because of the "degeneracy of Cartans" but desirable task (algebraic Bethe ansatz)

$$
\begin{aligned}
\rho_{1} & =\frac{\sinh (\lambda-\mu) \sinh (\mu)}{\sinh (\lambda-\mu+\eta) \sinh (\mu-\eta)}, \quad \rho_{2}=-\frac{\sinh (\lambda-\mu) \sinh (\eta)}{\sinh (\lambda-\mu+\eta) \sinh (\mu-\eta)} \\
\rho_{3} & =\frac{1}{\sinh (\lambda-\mu+\eta)}\left(\frac{\sinh (\eta) \sinh (\eta+\mu)}{\sinh (\eta+\lambda)}+\frac{\sinh (\lambda-\mu) \sinh (\mu)}{\sinh (\mu-\eta)}\right) \\
\rho_{4} & =\frac{\sinh (\lambda-\mu) \sinh (\eta)}{\sinh (\lambda-\mu+\eta) \sinh (\lambda+\eta)}, \quad \rho_{5}=\frac{\sinh (\eta)}{\sinh (\lambda-\mu+\eta)} \\
\rho_{6} & =\frac{\sinh (\lambda-\mu)}{\sinh (\lambda-\mu+\eta)}, \quad \rho_{7}=\frac{\sinh (\lambda-\mu) \sinh (\lambda)}{\sinh (\lambda-\mu+\eta) \sinh (\lambda+\eta)}
\end{aligned}
$$

Rational limit $\lambda \rightarrow \eta \lambda, \mu \rightarrow \eta \mu, \eta \rightarrow 0$

$$
\begin{gathered}
e^{i p_{j}(L-N-M)} e^{i P} e^{2 i K}=(-1)^{N-1} \\
e^{i k_{\ell}(L-2 N-M)} e^{i K} e^{i P}=(-1)^{M-1} \\
P=\sum_{j=1}^{N} p_{j}, \quad K=\sum_{j=1}^{M} k_{j}
\end{gathered}
$$

The energy is carried only by the particles (!), and the effect of the domain walls is only a change in the available volume

