Hilbert space fragmentation in integrable systems

A. Hutsalyuk Eötvös Loránd University

Les Diablerets

February 6, 2023

A. Hutsalyuk Eötvös Loránd University

Les Diablerets

イロト 人間 トイヨト イヨト

= nar

Thermalization and integrability

• The observable O thermalizes if after some relaxation time, the average expectation value of this observable agrees with the microcanonical expectation value For the initial state $|\psi_0\rangle$ and (an arbitrary) operator O evolution is provided by

$$|\psi(t)\rangle = \sum_{m} C_{m} e^{-iE_{m}t} |m\rangle, \qquad C_{m} = \langle m|\psi_{0}\rangle$$

$$\langle \psi(t) | \hat{O} | \psi(t) \rangle = \sum_{m,n} C_m^* C_n e^{i(E_m - E_n)t} O_{mn} = \sum_m |C_m|^2 O_{mm} + \sum_{n \neq m} C_m^* C_n e^{i(E_m - E_n)t} O_{mn}$$

i. How to proceed to a microcanonical ensemble in first term (time independent!) ii. What to do with states that are exponentially close to each other in the second term

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

ъ.

ETH

Description of a *thermalization* relies on the eigenstate thermalization hypothesis (ETH) J. M. Deutsch (1991) *Phys. Rev. A* 43 2046; M. Srednicki (1994) *Phys. Rev. E* 50 888
ETH could be considered as an ansatz for matrix elements

$$O_{mn} = \delta_{mn} O(\bar{E}) + e^{-S(\bar{E})} f_O(\bar{E}, \omega) R_{mn}, \qquad \omega = E_n - E_m, \qquad \bar{E} = \frac{E_m + E_n}{2}$$

- S(E) is an entropy
- f_O is a smooth function (operator dependent); $\overline{R_{mn}^2} = 1$, $\overline{|R_{mn}|^2} = 1$
- $O(\bar{E})$ coincides with an expectation value of the *microcanonical ensemble* Using ETH it is possible to proceed to averaging with a *diagonal ensemble* ρ_{DE}

$$\langle O \rangle = \lim_{t_0 \to \infty} \frac{1}{t_0} \int_0^{t_0} dt \ O(t) = \sum_m |C_m|^2 O_{mm} = \operatorname{Tr} \left[\rho_{\mathrm{DE}} O \right]$$

Integrable system, degeneracies and ETH

• In the integrable systems they are replaced by Generalized Gibbs ensemble (GGE)

$$ho = \exp(-eta H) \longrightarrow \exp\left(-\sum eta_k H_k
ight)$$

M. Rigol et. al. (2007) Phys. Rev. Lett. 98 050405; P. Calabrese et. al. (2011) Phys. Rev. Lett. 106, 227203; (2012) J. Stat. Mech. P07022

- Very successful for a lot of applications
- Note: only weak ETH is satisfied: an (exponentially!) small fraction of eigenstates does not obey the ETH, they have expectation values significantly different from the microcanonical ensemble
- However the complete breakdown of ETH could be expected in case of degeneracy!

・ロッ ・回ッ ・ヨッ ・ ヨッ

Folded-XXZ via crystal limit

$$H = Q_4 = -\frac{1}{4} \sum_{j=1}^{L} \left(1 + \sigma_j^z \sigma_{j+3}^z \right) \left(\sigma_{j+1}^+ \sigma_{j+2}^- + \sigma_{j+1}^- \sigma_{j+2}^+ \right)$$

Could be derived from XXZ chain using the crystal limit (note: Q_2 is nothing but Ising model)

$$Q_k = \lim_{\Delta o \infty} rac{Q_k}{\Delta^{[k/2]}}$$

where \tilde{Q}_{k} is kth integral of motion of XXZ chain Earlier this model was discovered (at least...) Z.-C. Yang, F. Liu, A. V. Gorshkov, T. ladecola, Phys. Rev. Lett. 124, 207602 (2020) L. Zadnik, M. Fagotti, SciPost Phys. Core 4, 10, (2021); L. Zadnik, K. Bidzhiev, M. Fagotti, SciPost Phys. 10, 99 (2021)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Properties

- Crystal limit models are (at least supposedly) simpler than the original one
- Crystal limit automatically provides us with Hamiltonians that are integrable
- Limit is known for the Hamiltonian only. It is not clear how to generalize it for the Lax operator and *R*-matrix (?)
- It is naturally to expect a large degree of degeneracy in the spectrum since the crystal limit also affects Bethe equations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Bethe ansatz solution

Bethe equations naturally follows from the crystal limit of ordinary XXZ equations

$$e^{ip_{j,n}L}\prod_{\substack{m,k\ (j,n)
eq (k,m)}}S_{n,m}(p_{j,n}-p_{k,m})=1 \longrightarrow e^{ip_{j,1}(L-N_1-2N_s)}=(-1)^{N_1-1}e^{-iP_1-2iP_s}$$

s is a number of strings. N_1 – number of particles There are "particles" (and correspondingly scattering matrices) of two types

$$S_{1,1}(p,k) = -e^{-i(p-k)},$$
 $S_{1,n}(p,k) = e^{-2i(p-k)}$ the last does not depend on $n!$

In this picture strings could be understood as "domain walls". The last are not dynamical on their own: in the absence of particles they lead to frozen configuration and exponentially degenerate Hilbert states イロト 人間 トイヨト イヨト

A. Hutsalvuk Eötvös Loránd University

ъ.

Domain walls (DW) dynamic

Scattering of a particle with a DW. As the result DW gets replaced by 2 sites to the left, and the trajectory of the particle receives a displacement of 1 site to the right

Les Diablerets

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Dual transformation

Bond-site transformation

$$egin{array}{ccc} |\circ
angle_{j} & ext{if} & \sigma_{j}^{z}\sigma_{j+1}^{z}=1 \ |ullet
angle_{j} & ext{if} & \sigma_{j}^{z}\sigma_{j+1}^{z}=-1 \end{array}$$

We can interpret $|\circ\rangle$ as the up spin, and $|\bullet\rangle$ as the down spin Note : transformation is good defined in boundary case. Some problems in a periodic case (we neglect it since TDL is object of interest at the very end) Note: Q_1 becomes non-local

$$Q_1 = rac{1}{2} \sum_{j=1}^{L-1} \left[1 - \prod_{k=1}^j \sigma_j^z
ight]$$

イロン 人間 とくほ とくほ とう

3

Charges transformation (note: Q_4 is 3-site now)

$$Q_{2} \rightarrow \sum_{j=1}^{L-1} \sigma_{j}^{z}$$

$$Q_{3} \rightarrow i \sum_{j} \sigma_{j}^{-} P_{j+1}^{\bullet} \sigma_{j+2}^{+} - \sigma_{j}^{+} P_{j+1}^{\bullet} \sigma_{j+2}^{-}$$

$$Q_{4} \rightarrow \sum_{j} \sigma_{j}^{-} P_{j+1}^{\bullet} \sigma_{j+2}^{+} + \sigma_{j}^{+} P_{j+1}^{\bullet} \sigma_{j+2}^{-}$$

here $P^{\bullet} = (1 - \sigma^z)/2$. The only non-zero elements of Qs are

$$|\circ \bullet \bullet\rangle \to |\bullet \bullet \circ\rangle, \qquad |\bullet \bullet \circ\rangle \to |\circ \bullet \bullet\rangle$$

Thus Q_3 , Q_4 , etc, move only double ••. Single • remains invariant!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Overlaps in folded-XXZ

Define set of states

$$\langle x_1,\ldots,x_N\rangle = \sigma_{x_1}^-\ldots\sigma_{x_N}^-|\emptyset\rangle,$$

restriction $1 \le x_1 < \cdots < x_N \le L$ is imposed to avoid double counting Specific Neél state with N particles in a volume L = 3N

$$\left|\Psi_{0}^{\prime}
ight
angle=\left|3,6,9,\dots
ight
angle$$

From the limit of Slavnov's determinant (overlap of XXZ Bethe vectors)

$$\langle \Psi_0' | oldsymbol{p}
angle = \det_{jk} e^{i p_j (2k+1)}$$

A. Hutsalyuk Eötvös Loránd University

イロト イボト イヨト イヨト

ъ.

On-shell overlap with initial state

We consider the initial state

$$|\Psi_0
angle = rac{1+U+U^2}{\sqrt{3}} ig| \Psi_0' ig
angle,$$

where U is the one-site cyclic shift operator In the zero momentum sector the Bethe equations are

$$e^{i2Np_j}=-1, \qquad j=1,\ldots,N,$$

L = 3N, N assumed to be even for simplicity The overlaps can be expressed simply as

$$|\langle \Psi_0 | oldsymbol{p}
angle|^2 = \prod_{j < k} |e^{i2p_j} - e^{i2p_k}|^{-2}
ightarrow N^N$$

A. Hutsalyuk Eötvös Loránd University

Les Diablerets

-

Solvable quench dynamics

Form factor sum could be written as

$$\langle \mathcal{O}(t)
angle = \sum_{oldsymbol{p},oldsymbol{k}} rac{\langle \Psi_0 | oldsymbol{p}
angle \langle oldsymbol{p} | \mathcal{O} | oldsymbol{k}
angle \langle oldsymbol{k} | \Psi_0
angle}{\langle oldsymbol{p} | oldsymbol{p}
angle \langle oldsymbol{k} | oldsymbol{k}
angle} e^{-i(E_{oldsymbol{k}} - E_{oldsymbol{p}})t}$$

Emptiness formation probability (EFP)

$$\mathbb{E}_\ell(x) = \prod_{j=1}^\ell rac{1+\sigma_{x-1+j}^z}{2}.$$

- Form factors should be computed $\langle \boldsymbol{p} | \mathcal{O} | \boldsymbol{k} \rangle$
- Summation over **p**, **k** should be performed

イロト 人間 トイヨト イヨト

= na0

Form factors

N. M. Bogoliubov, C. L. Malvshev, Theor. Math. Phys. 169, 1517 (2011)

$$\langle oldsymbol{
ho} | \mathbb{E}_\ell(x) | oldsymbol{k}
angle = \prod_{j \leq k} rac{1}{\left(e^{i u_j^C} - e^{i u_k^C}
ight) \left(e^{i u_j^B} - e^{i u_k^B}
ight)} \det \mathcal{T},$$

$$egin{aligned} \mathcal{T}_{jj} &= (N-L+\ell-1)e^{-2ik_j}, \quad u_j^{C} = u_k^{B}, \ \mathcal{T}_{jk} &= e^{i(\ell-1)(u_j^{B}+u_k^{C})}rac{\sin\left((\ell-1)(u_j^{B}-u_k^{C})
ight)}{\sin(u_j^{B}-u_k^{C})}, \quad u_j^{C}
eq u_k^{B}. \end{aligned}$$

For diagonal part of \mathcal{T} the rank is given by the number of coinciding elements in the sets \bar{u}^{C} , \bar{u}^{B} ! This put very heavy restrictions on the summation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

After simple summation over form factors the exact quench for \mathbb{E}_3 is given by

$$\langle \psi(t)|\mathbb{E}_{3}(x)|\psi(t)\rangle = \frac{1}{6} - \frac{1}{6} \left(\frac{1}{N} \sum_{a} \cos(2\cos(c_{a})t)\right)^{2} - \frac{1}{6} \left|\frac{1}{N} \sum_{a} \sin(2\cos(c_{a})t)e^{ic_{a}}\right|^{2}$$

 $c_a = \pi (2a-1)/(2N)$, $a = 1, \ldots, N$. In the thermodynamic limit the last expression is

$$\langle \psi(t) | \mathbb{E}_3(x) | \psi(t) \rangle = rac{1}{6} \left[1 - (J_0(2t))^2 - (J_1(2t))^2 \right]$$

A. Hutsalyuk Eötvös Loránd University

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Thermalization in a fragmented Hilbert space

Problem of thermalization from the initial state $|\psi_0
angle$

$$\langle \mathcal{O}(t)
angle = \sum \langle \Psi_0|a
angle \langle a|\mathcal{O}|b
angle \langle b|\Psi_0
angle e^{-i(E_b-E_a)t}$$

We denote by E_a the energy eigenvalues, and by a further discrete index j the states $|a, j\rangle$ in the degenerate eigenspaces. Then

$$\lim_{t o \infty} \langle \mathcal{O}(t)
angle = \sum_{a} \sum_{j,k} \langle \Psi_0 | a, j
angle \langle a, j | \mathcal{O} | a, k
angle \langle a, k | \Psi_0
angle.$$

We choose the initial state and the operator as

$$|\Psi_0\rangle = \otimes_{j=1}^{L} \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 1 \end{pmatrix}, \qquad \qquad D_k = \prod_{j=1}^{k} \sigma_j^-$$

Breakdown of GGE: Persistent oscillation

GE (GGE) predicts the relaxation to a stationary equilibrium state. Persistent oscillations that we observe for above operator clearly violate this hypothesis

Figure: Simulation is done by time evolved block decimation, the maximal bond dimension is $\chi_{max} = 1000$, the Trotter time step is $\delta t = 0.01$. The oscillation of the expectation value with a frequency directly given by h. A 3 5 A 3 5 A ъ A. Hutsalyuk Eötvös Loránd University

Les Diablerets Hilbert space fragmentation in integrable systems

$T\bar{T}$ -deformations in lattice models

For any pair of extensive charges Q_{α} and Q_{β} a $T\bar{T}$ -like deformation could be defined. To first order the deformation consists in modifying the Hamiltonian H as

$$\mathcal{H}' = \mathcal{H} + \kappa \left(J_lpha(x) q_eta(x) - q_lpha(y) J_eta(x+1)
ight) + \mathcal{O}(\kappa^2),$$

here $Q_{lpha}=\sum_{x}q_{lpha}(x)$, $J_{lpha}=\sum_{x}J_{lpha}(x)$ satisfy the continuity equation

 $\partial_t q_\alpha(x,t) + \partial_x J_\alpha(x,t) = 0$

Then the two-particle scattering matrix $S(p, k) = e^{i\delta(p,k)}$ gets deformed as

$$\delta'(p,k) = \delta(p,k) + \kappa(h_lpha(p)h_eta(k) - h_lpha(k)h_eta(p)) + \mathcal{O}(\kappa^2)$$

where $h_{\alpha,\beta}$ are the one-particle eigenvalue functions of the charges Q_{α} and Q_{β}

$T\bar{T}$ -deformations in folded XX7

Usual $T\bar{T}$: energy and momentum We choose instead: particle number and momentum This case is called **hard-rod deformation**

$$S(p,k) \rightarrow S(p,k) \exp(i\kappa(p-k))$$

Folded-XX7 case

$$S(p,k) = -e^{i(p-k)}$$

thus S(p,k) = -1 (XX model), $\kappa = 1$ and folded-XXZ is equal to the hard-rod deformation of XX model Note: rigorously speaking $T\bar{T}$ is not defined on the lattice since there is no momentum operator on lattice which would be ab extensive local charge

・ロット (雪) () () () ()

3

Hard-rod XXZ

We can consider following projection operators

$${\mathcal P}^\circ = rac{1+\sigma^z}{2}, \qquad {\mathcal P}^ullet = rac{1-\sigma^z}{2}.$$

Then ordinary XXZ spin chain could be written as

$$h_{j,j+1} = \sigma_j^- \sigma_{j+1}^+ + \sigma_j^+ \sigma_{j+1}^- - \Delta (P_j^\circ P_{j+1}^\bullet + P_j^\bullet P_{j+1}^\circ), \qquad H = 2 \sum_j h_{j,j+1}.$$

Hard-rod deformation of XXZ with core of length ℓ is given by

$$H = \sum_{j} \left[h_{j,j+\ell} \prod_{k=1}^{\ell-1} P_{j+k}^{\bullet} \right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Properties

$$\mathcal{H} = \sum_{j} \left[h_{j,j+\ell} \prod_{k=1}^{\ell-1} P^ullet_{j+k}
ight].$$

• $\ell = 1$ is ordinary XXZ chain

• $\ell = 2$ with $\Delta = 0$ is a folded-XXZ in a "dual representation" (thus folded-XXZ could be called a hard-rod deformed XX)

• $\ell = 2$ with $\Delta = 0$ coincides with a Bariev model at U = 1

$$H = \sum_{j} \left[\sigma_{j}^{-} \sigma_{j+2}^{+} + \sigma_{j}^{+} \sigma_{j+2}^{-} \right] \frac{1 - U \sigma_{j+1}^{z}}{2},$$

イロト イボト イヨト イヨト

= nar

Wave function is given by

$$|\Psi
angle = \sum_{x_1 \le x_2 \le \dots x'_N} \sum_{\mathcal{P} \in \mathcal{S}_{N'}} e^{i \sum_{j=1}^{N'} q_{\mathcal{P}_j} x_j} \prod_{j \le k} \mathcal{S}_{a_j, a_k}(q_j, q_k) \prod_{j=1}^{N'} \mathcal{A}_{x_j}^{a_{\mathcal{P}_j}} |\Omega
angle$$
 $\mathcal{A}_j^a = \begin{cases} \sigma_j^- & \text{if } a = 1\\ \sigma_j^- \sigma_{j+1}^- & \text{if } a = 2. \end{cases}$

Here scattering matrices are

$$egin{aligned} S_{1,1}(q_1,q_2) &= -e^{-i(q_1-q_2)},\ S_{2,2}(q_1,q_2) &= e^{-i(q_1-q_2)}S_{XXZ}(q_1,q_2),\ S_{1,2}(q_1,q_2) &= e^{-i(q_1-2q_2)}, \end{aligned}$$

where S_{XXZ} is an ordinary scattering matrix of magnons in XXZ chains

4.30

Yang-Baxter integrability:

 $R_{12}(\lambda_1, \lambda_2)R_{23}(\lambda_2, \lambda_3)R_{13}(\lambda_1, \lambda_3) = R_{13}(\lambda_1, \lambda_3)R_{23}(\lambda_2, \lambda_3)R_{12}(\lambda_1, \lambda_2)$

$$R_{B,A}(\nu,\mu)\mathcal{L}_{B,j}(\nu)\mathcal{L}_{A,j}(\mu) = \mathcal{L}_{A,j}(\mu)\mathcal{L}_{B,j}(\nu)R_{B,A}(\nu,\mu)$$

• Lax operator could be derived (rather guessed) from the set of condition (self-commutativity of the transfer matrix [t(u), t(v)] = 0 could be checked on a final chain)

3rd index denotes quantums space, the 1st and the 2nd – auxiliary spaces (i.e. $A, B = a \otimes b$)

- *R*-matrix could be fixed then from the *RII*-relation
- Yang-Baxter equation provides the final check (!) for the *R*-matrix

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

$$R(\lambda,\mu) = \begin{pmatrix} E_{11} + E_{44}\rho_1 & E_{21} + E_{43}\rho_2 & E_{31} & E_{41}\rho_5 \\ E_{12} & E_{22} + E_{44}\rho_6 & E_{32} & E_{42}\rho_5 \\ E_{13} + E_{24}\rho_2 & E_{23}\rho_3 & E_{33} + E_{44}\rho_6 & E_{21}\rho_4 + E_{43}\rho_5 \\ E_{14}\rho_5 & E_{13}\rho_4 + E_{24}\rho_5 & E_{34}\rho_5 & E_{11}\rho_7 + (E_{22} + E_{33})\rho_6 + E_{44} \end{pmatrix}$$

- Matrix has a non-difference form
- Diagonal elements (Cartans) are "degenerated" (Gauss decomposition issues?)
- Rational limit ($\Delta = 1$)

$$\check{R}_{12,34}(u,v) = 1 + \frac{u-v}{u-v+1} \Big(h_{234} + h_{123} + \frac{u}{u+1} h_{234} h_{123} + \frac{v}{v-1} h_{123} h_{234} \Big)$$

$$\check{\mathcal{L}}_{a,b,j}(u) = \check{\mathcal{L}}_{a,j}^{(XXX)}(u)P_b^{\bullet} + P_b^{\circ}, \qquad \check{R}_{ab,cd}(u) = \mathcal{P}_{a,c}\mathcal{P}_{b,d}R_{ab,cd}(u)$$

3

Conclusions

- Folded-XXZ is only one model in a big family of hard-rod models
- Moreover, each given *R*-matrix assume existence of (in general infinite) family of Lax operators (so, infinite family of models)
- Folded-XXZ Hamiltonian arises as a crystal limit of usual XXZ (algebra symmetry $\mathfrak{gl}(2)$). Immediate generalization for higher rank algebra related cases turns out to be possible (crystal limit in Perk-Schultz models)
- All of such models posses quite degenerate spectrum
- RLL expansion of these models in terms of Drinfeld currents is quite challenging task because of the "degeneracy of Cartans" but desirable task (algebraic Bethe ansatz)

イロト 不同 トイヨト イヨト ヨー うのの

$$\rho_{1} = \frac{\sinh(\lambda - \mu)\sinh(\mu)}{\sinh(\lambda - \mu + \eta)\sinh(\mu - \eta)}, \qquad \rho_{2} = -\frac{\sinh(\lambda - \mu)\sinh(\eta)}{\sinh(\lambda - \mu + \eta)\sinh(\mu - \eta)},$$

$$\rho_{3} = \frac{1}{\sinh(\lambda - \mu + \eta)} \left(\frac{\sinh(\eta)\sinh(\eta + \mu)}{\sinh(\eta + \lambda)} + \frac{\sinh(\lambda - \mu)\sinh(\mu)}{\sinh(\mu - \eta)}\right),$$

$$\rho_{4} = \frac{\sinh(\lambda - \mu)\sinh(\eta)}{\sinh(\lambda - \mu + \eta)\sinh(\lambda + \eta)}, \qquad \rho_{5} = \frac{\sinh(\eta)}{\sinh(\lambda - \mu + \eta)},$$

$$\rho_{6} = \frac{\sinh(\lambda - \mu)}{\sinh(\lambda - \mu + \eta)}, \qquad \rho_{7} = \frac{\sinh(\lambda - \mu)\sinh(\lambda)}{\sinh(\lambda - \mu + \eta)\sinh(\lambda + \eta)}.$$

Rational limit $\lambda \to \eta \lambda$, $\mu \to \eta \mu$, $\eta \to 0$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● の � @

$$e^{ip_j(L-N-M)}e^{iP}e^{2iK} = (-1)^{N-1},$$

 $e^{ik_\ell(L-2N-M)}e^{iK}e^{iP} = (-1)^{M-1},$

$$P=\sum_{j=1}^N p_j, \qquad K=\sum_{j=1}^M k_j.$$

The energy is carried only by the particles (!), and the effect of the domain walls is only a change in the available volume

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0