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Thermalization and integrability

• The observable O thermalizes if after some relaxation time, the average expectation
value of this observable agrees with the microcanonical expectation value
For the initial state |ψ0〉 and (an arbitrary) operator O evolution is provided by

|ψ(t)〉 =
∑
m

Cme
−iEmt |m〉, Cm = 〈m|ψ0〉

〈ψ(t)|Ô|ψ(t)〉 =
∑
m,n

C ∗mCne
i(Em−En)tOmn =

∑
m

|Cm|2Omm +
∑
n 6=m

C ∗mCne
i(Em−En)tOmn

i. How to proceed to a microcanonical ensemble in first term (time independent!)
ii. What to do with states that are exponentially close to each other in the second term
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ETH

• Description of a thermalization relies on the eigenstate thermalization hypothesis
(ETH) J. M. Deutsch (1991) Phys. Rev. A 43 2046; M. Srednicki (1994) Phys. Rev. E 50 888

• ETH could be considered as an ansatz for matrix elements

Omn = δmnO(Ē ) + e−S(Ē)fO(Ē , ω)Rmn, ω = En − Em, Ē =
Em + En

2

• S(E ) is an entropy
• fO is a smooth function (operator dependent); R2

mn = 1, |Rmn|2 = 1
• O(Ē ) coincides with an expectation value of the microcanonical ensemble
Using ETH it is possible to proceed to averaging with a diagonal ensemble ρDE

〈O〉 = lim
t0→∞

1

t0

∫ t0

0
dt O(t) =

∑
m

|Cm|2Omm = Tr [ρDEO]
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Integrable system, degeneracies and ETH

• In the integrable systems they are replaced by Generalized Gibbs ensemble (GGE)

ρ = exp(−βH) −→ exp
(
−
∑

βkHk

)
M. Rigol et. al. (2007) Phys. Rev. Lett. 98 050405; P. Calabrese et. al. (2011) Phys. Rev. Lett.

106, 227203; (2012) J. Stat. Mech. P07022

• Very successful for a lot of applications
• Note: only weak ETH is satisfied: an (exponentially!) small fraction of eigenstates
does not obey the ETH, they have expectation values significantly different from the
microcanonical ensemble
• However the complete breakdown of ETH could be expected in case of degeneracy!
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Folded-XXZ via crystal limit

H = Q4 = −1

4

L∑
j=1

(
1 + σzj σ

z
j+3

) (
σ+
j+1σ

−
j+2 + σ−j+1σ

+
j+2

)
Could be derived from XXZ chain using the crystal limit (note: Q2 is nothing but Ising
model)

Qk = lim
∆→∞

Q̃k

∆[k/2]

where Q̃k is kth integral of motion of XXZ chain Earlier this model was discovered (at least...)
Z.-C. Yang, F. Liu, A. V. Gorshkov, T. Iadecola, Phys. Rev. Lett. 124, 207602 (2020)

L. Zadnik, M. Fagotti, SciPost Phys. Core 4, 10, (2021); L. Zadnik, K. Bidzhiev, M. Fagotti, SciPost

Phys. 10, 99 (2021)
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Properties

• Crystal limit models are (at least supposedly) simpler than the original one
• Crystal limit automatically provides us with Hamiltonians that are integrable
• Limit is known for the Hamiltonian only. It is not clear how to generalize it for the
Lax operator and R-matrix (?)
• It is naturally to expect a large degree of degeneracy in the spectrum since the
crystal limit also affects Bethe equations
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Bethe ansatz solution

Bethe equations naturally follows from the crystal limit of ordinary XXZ equations

e ipj,nL
∏
m,k

(j ,n) 6=(k,m)

Sn,m(pj ,n − pk,m) = 1 −→ e ipj,1(L−N1−2Ns) = (−1)N1−1e−iP1−2iPs

s is a number of strings, N1 – number of particles
There are “particles” (and correspondingly scattering matrices) of two types

S1,1(p, k) = −e−i(p−k), S1,n(p, k) = e−2i(p−k) the last does not depend on n!

In this picture strings could be understood as “domain walls”. The last are not
dynamical on their own: in the absence of particles they lead to frozen configuration
and exponentially degenerate Hilbert states
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Domain walls (DW) dynamic

Scattering of a particle with a DW. As the result DW gets replaced by 2 sites to the
left, and the trajectory of the particle receives a displacement of 1 site to the right

A. Hutsalyuk Eötvös Loránd University Les Diablerets Hilbert space fragmentation in integrable systems



Hilbert space fragmentation and thermalization
Folded-XXZ model

Inverse scattering problem

Dual transformation

Bond-site transformation

|◦〉j if σzj σ
z
j+1 = 1

|•〉j if σzj σ
z
j+1 = −1

We can interpret |◦〉 as the up spin, and |•〉 as the down spin
Note : transformation is good defined in boundary case. Some problems in a periodic
case (we neglect it since TDL is object of interest at the very end)
Note: Q1 becomes non-local

Q1 =
1

2

L−1∑
j=1

[
1−

j∏
k=1

σzj

]
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Charges transformation (note: Q4 is 3-site now)

Q2 →
L−1∑
j=1

σzj

Q3 → i
∑
j

σ−j P
•
j+1σ

+
j+2 − σ

+
j P
•
j+1σ

−
j+2

Q4 →
∑
j

σ−j P
•
j+1σ

+
j+2 + σ+

j P
•
j+1σ

−
j+2

here P• = (1− σz)/2. The only non-zero elements of Qs are

|◦ • •〉 → |• • ◦〉, |• • ◦〉 → |◦ • •〉

Thus Q3, Q4, etc, move only double ••. Single • remains invariant!
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Overlaps in folded-XXZ

Define set of states
|x1, . . . , xN〉 = σ−x1

. . . σ−xN |∅〉,

restriction 1 ≤ x1 < · · · < xN ≤ L is imposed to avoid double counting
Specific Neél state with N particles in a volume L = 3N∣∣Ψ′0〉 = |3, 6, 9, . . . 〉

From the limit of Slavnov’s determinant (overlap of XXZ Bethe vectors)

〈Ψ′0|p〉 = det
jk

e ipj (2k+1)
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On-shell overlap with initial state

We consider the initial state

|Ψ0〉 =
1 + U + U2

√
3

∣∣Ψ′0〉,
where U is the one-site cyclic shift operator
In the zero momentum sector the Bethe equations are

e i2Npj = −1, j = 1, . . . ,N,

L = 3N, N assumed to be even for simplicity
The overlaps can be expressed simply as

|〈Ψ0|p〉|2 =
∏
j<k

|e i2pj − e i2pk |−2 → NN
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Solvable quench dynamics

Form factor sum could be written as

〈O(t)〉 =
∑
p,k

〈Ψ0|p〉〈p|O|k〉〈k |Ψ0〉
〈p|p〉〈k |k〉

e−i(Ek−Ep)t

Emptiness formation probability (EFP)

E`(x) =
∏̀
j=1

1 + σzx−1+j

2
.

• Form factors should be computed 〈p|O|k〉
• Summation over p, k should be performed
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Form factors

N. M. Bogoliubov, C. L. Malyshev, Theor. Math. Phys. 169, 1517 (2011)

〈p|E`(x)|k〉 =
∏
j≤k

1(
e iu

C
j − e iu

C
k

)(
e iu

B
j − e iu

B
k

) det T ,

Tjj = (N − L + `− 1)e−2ikj , uC
j = uB

k ,

Tjk = e i(`−1)(uBj +uCk )
sin
(

(`− 1)(uB
j − uC

k )
)

sin(uB
j − uC

k )
, uC

j 6= uB
k .

For diagonal part of T the rank is given by the number of coinciding elements in the
sets ūC , ūB! This put very heavy restrictions on the summation
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After simple summation over form factors the exact quench for E3 is given by

〈ψ(t)|E3(x)|ψ(t)〉 =
1

6
−1

6

(
1

N

∑
a

cos(2 cos(ca)t)

)2

−1

6

∣∣∣∣∣ 1

N

∑
a

sin(2 cos(ca)t)e ica

∣∣∣∣∣
2

ca = π(2a− 1)/(2N), a = 1, . . . ,N. In the thermodynamic limit the last expression is

〈ψ(t)|E3(x)|ψ(t)〉 =
1

6

[
1− (J0(2t))2 − (J1(2t))2

]
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Thermalization in a fragmented Hilbert space

Problem of thermalization from the initial state |ψ0〉

〈O(t)〉 =
∑
〈Ψ0|a〉〈a|O|b〉〈b|Ψ0〉e−i(Eb−Ea)t

We denote by Ea the energy eigenvalues, and by a further discrete index j the states
|a, j〉 in the degenerate eigenspaces. Then

lim
t→∞

〈O(t)〉 =
∑
a

∑
j ,k

〈Ψ0|a, j〉〈a, j |O|a, k〉〈a, k|Ψ0〉.

We choose the initial state and the operator as

|Ψ0〉 = ⊗L
j=1

1√
2

(
1
1

)
, Dk =

k∏
j=1

σ−j
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Breakdown of GGE: Persistent oscillation

GE (GGE) predicts the relaxation to a stationary equilibrium state. Persistent
oscillations that we observe for above operator clearly violate this hypothesis
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Figure: Simulation is done by time evolved block decimation, the maximal bond dimension is
χmax = 1000, the Trotter time step is δt = 0.01. The oscillation of the expectation value with
a frequency directly given by h.
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TT̄ -deformations in lattice models

For any pair of extensive charges Qα and Qβ a TT̄ -like deformation could be defined.
To first order the deformation consists in modifying the Hamiltonian H as

H ′ = H + κ (Jα(x)qβ(x)− qα(y)Jβ(x + 1)) +O(κ2),

here Qα =
∑

x qα(x), Jα =
∑

x Jα(x) satisfy the continuity equation

∂tqα(x , t) + ∂xJα(x , t) = 0

Then the two-particle scattering matrix S(p, k) = e iδ(p,k) gets deformed as

δ′(p, k) = δ(p, k) + κ(hα(p)hβ(k)− hα(k)hβ(p)) +O(κ2)

where hα,β are the one-particle eigenvalue functions of the charges Qα and Qβ
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TT̄ -deformations in folded XXZ

Usual TT̄ : energy and momentum
We choose instead: particle number and momentum
This case is called hard-rod deformation

S(p, k)→ S(p, k) exp(iκ(p − k))

Folded-XXZ case
S(p, k) = −e i(p−k)

thus S(p, k) = −1 (XX model), κ = 1 and folded-XXZ is equal to the hard-rod
deformation of XX model
Note: rigorously speaking TT̄ is not defined on the lattice since there is no
momentum operator on lattice which would be ab extensive local charge
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Hard-rod XXZ

We can consider following projection operators

P◦ =
1 + σz

2
, P• =

1− σz

2
.

Then ordinary XXZ spin chain could be written as

hj ,j+1 = σ−j σ
+
j+1 + σ+

j σ
−
j+1 −∆(P◦j P

•
j+1 + P•j P

◦
j+1), H = 2

∑
j

hj ,j+1.

Hard-rod deformation of XXZ with core of length ` is given by

H =
∑
j

[
hj ,j+`

`−1∏
k=1

P•j+k

]
.
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Properties

H =
∑
j

[
hj ,j+`

`−1∏
k=1

P•j+k

]
.

• ` = 1 is ordinary XXZ chain
• ` = 2 with ∆ = 0 is a folded-XXZ in a “dual representation” (thus folded-XXZ could
be called a hard-rod deformed XX)
• ` = 2 with ∆ = 0 coincides with a Bariev model at U = 1

H =
∑
j

[
σ−j σ

+
j+2 + σ+

j σ
−
j+2

] 1− Uσzj+1

2
,
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Wave function is given by

|Ψ〉 =
∑

x1≤x2≤...x ′N

∑
P∈SN′

e
i
∑N′

j=1 qPj
xj
∏
j≤k

Saj ,ak (qj , qk)
N′∏
j=1

A
aPj
xj |Ω〉

Aa
j =

{
σ−j if a = 1

σ−j σ
−
j+1 if a = 2.

Here scattering matrices are

S1,1(q1, q2) = −e−i(q1−q2),

S2,2(q1, q2) = e−i(q1−q2)SXXZ (q1, q2),

S1,2(q1, q2) = e−i(q1−2q2),

where SXXZ is an ordinary scattering matrix of magnons in XXZ chains
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Yang-Baxter integrability:

R12(λ1, λ2)R23(λ2, λ3)R13(λ1, λ3) = R13(λ1, λ3)R23(λ2, λ3)R12(λ1, λ2)

RB,A(ν, µ)LB,j(ν)LA,j(µ) = LA,j(µ)LB,j(ν)RB,A(ν, µ)

• Lax operator could be derived (rather guessed) from the set of condition
(self-commutativity of the transfer matrix [t(u), t(v)] = 0 could be checked on a final
chain)

Ľa,b,j(u) = Ľ(XXZ)
a,j (u)P•b + P◦b La,b,j(u) = Pa,jPb,j Ľa,b,j(u)

3rd index denotes quantums space, the 1st and the 2nd – auxiliary spaces (i.e. A,B = a⊗ b)

• R-matrix could be fixed then from the RLL-relation
• Yang-Baxter equation provides the final check (!) for the R-matrix
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R(λ, µ)

=


E11 + E44ρ1 E21 + E43ρ2 E31 E41ρ5

E12 E22 + E44ρ6 E32 E42ρ5

E13 + E24ρ2 E23ρ3 E33 + E44ρ6 E21ρ4 + E43ρ5

E14ρ5 E13ρ4 + E24ρ5 E34ρ5 E11ρ7 + (E22 + E33)ρ6 + E44


• Matrix has a non-difference form
• Diagonal elements (Cartans) are “degenerated” (Gauss decomposition issues?)
• Rational limit (∆ = 1)

Ř12,34(u, v) = 1 +
u − v

u − v + 1

(
h234 + h123 +

u

u + 1
h234h123 +

v

v − 1
h123h234

)
Ľa,b,j(u) = Ľ(XXX )

a,j (u)P•b + P◦b , Řab,cd(u) = Pa,cPb,dRab,cd(u)
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Conclusions

• Folded-XXZ is only one model in a big family of hard-rod models
• Moreover, each given R-matrix assume existence of (in general infinite) family of Lax
operators (so, infinite family of models)
• Folded-XXZ Hamiltonian arises as a crystal limit of usual XXZ (algebra symmetry
gl(2)). Immediate generalization for higher rank algebra related cases turns out to be
possible (crystal limit in Perk-Schultz models)
• All of such models posses quite degenerate spectrum
• RLL expansion of these models in terms of Drinfeld currents is quite challenging task
because of the “degeneracy of Cartans” but desirable task (algebraic Bethe ansatz )
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ρ1 =
sinh(λ− µ) sinh(µ)

sinh(λ− µ+ η) sinh(µ− η)
, ρ2 = − sinh(λ− µ) sinh(η)

sinh(λ− µ+ η) sinh(µ− η)
,

ρ3 =
1

sinh(λ− µ+ η)

(
sinh(η) sinh(η + µ)

sinh(η + λ)
+

sinh(λ− µ) sinh(µ)

sinh(µ− η)

)
,

ρ4 =
sinh(λ− µ) sinh(η)

sinh(λ− µ+ η) sinh(λ+ η)
, ρ5 =

sinh(η)

sinh(λ− µ+ η)
,

ρ6 =
sinh(λ− µ)

sinh(λ− µ+ η)
, ρ7 =

sinh(λ− µ) sinh(λ)

sinh(λ− µ+ η) sinh(λ+ η)
.

Rational limit λ→ ηλ, µ→ ηµ, η → 0
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e ipj (L−N−M)e iPe2iK = (−1)N−1,

e ik`(L−2N−M)e iKe iP = (−1)M−1,

P =
N∑
j=1

pj , K =
M∑
j=1

kj .

The energy is carried only by the particles (!), and the effect of the domain walls is
only a change in the available volume
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