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Outline of the talk

o Introduction: Dynamical two-point functions of quantum chains

o Thermal form-factor series (TFFS) for dynamical two-point functions
o Another factorization: thermal form factors and universal amplitude
o On properly normalized thermal form factors
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o TFFS for the two-point functions of the local magnetization and spin current
operators of the XXZ chain in the massive antiferromagnetic regime — the
low-T limit

o Summary and discussion
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o Quantum chain:
K, = ((Cd)®L finite dimensional Hilbert space
HL € EndH; Hamiltonian
x =id®U D exeid®(t), x € End(C?)  local operator



Introduction

StatMech of quantum chains (discrete space, continuous time)

o Quantum chain:
H, = ((Cd)®L finite dimensional Hilbert space
Hp € EndH; Hamiltonian

x =id®*U D ex®id®(t), x € End(C?)  local operator

o QStatMech:
X x;(t) = el ;e 1MLt Q: Heisenberg time evolution

tr{efHL/Tx

pu(MIX]= w{e ATY

StatMech: canonical density matrix
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Introduction

StatMech of quantum chains (discrete space, continuous time)

o Quantum chain:
H, = ((Cd)m finite dimensional Hilbert space
Hp € EndH; Hamiltonian

x =id®*U D ex®id®(t), x € End(C?)  local operator

o QStatMech:
X x;(t) = el ;e 1MLt Q: Heisenberg time evolution

tr{efHL/Tx

pu(MIX]= w{e ATY

StatMech: canonical density matrix

o Linear response theory (‘Kubo theory’) connects the response of a large quantum
system to time-(= t)-dependent perturbations (= experiments) with dynamical
correlation functions at finite temperature T

1 ()yYme1)T = JE}OPL(T)[M (t)Ym+1]
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o The XXZ model
L y z z h S ¥4
H(A) =J Y {of 0] +0] 0] + Acf 07} — Z; %
=1 =

J>0,heR, A=ch(y)eR,g=e"



o The XXZ model
L hL
HL(B8) = Y {o] 10] +0] ;0] + Acf yof} 3 ), o]
J=1 J=1
J>0,heR, A=ch(y)eR,g=e"
o Main goal of my research: Calculate
<Gf(t)0fn+1 >T ) <0.1_(t)0-;+1 >T )

explicitly for all values of m, t, T and A, h!



Introduction

Prime example of an integrable spin chain Hamiltonian

@ The XXZ model
L h&
HU(B) =J Y {o] 1] +0] 0] +A0f 0]}~ 7 ) of
= =

J>0,heR, A=ch(y)eR,g=¢e"
o Main goal of my research: Calculate
(65()051) 7 (07 (DOhit) 7

explicitly for all values of m, t, T and A, h!

o State of the art: Dynamical correlation functions at finite temperature not known
for any Yang-Baxter integrable lattice model, except for the XX model

Hxx = H.(0)
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Prime example of an integrable spin chain Hamiltonian

@ The XXZ model
L h&
HU(B) =J Y {o] 1] +0] 0] +A0f 0]}~ 7 ) of
= =

J>0,heR, A=ch(y)eR,g=¢e"
o Main goal of my research: Calculate
(65()051) 7 (07 (DOhit) 7
explicitly for all values of m, t, T and A, h!

o State of the art: Dynamical correlation functions at finite temperature not known
for any Yang-Baxter integrable lattice model, except for the XX model

Hxx = H.(0)
o For the XX model the longitudinal two-point functions are

z z 22 T dp ei(mp—te(p)) T dp e—i(mp—te(p))
<G1(t)6m+1>r_<61>r— [/*E;W LJW

where g(p) = h—4J cos(p)
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Introduction

Longitudinal correlation functions of XX model

o This simple expression can be analyzed numerically and asymptotically by means
of the saddle point method
0.15 T T

R » timelike
« spacelike
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t

Real part of the connected longitudinal two-point function of the XX chain at
m=12, T=1,h=0.2and J = 1/4 as a function of time
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Thermal form factor series

Dynamical two-point functions as a lattice path integral

Vertex model representation at finite Trotter number N

ord | I t7 — Quanum

2N 1 5 ~(tn+he/T)/N transfer matrix
e DRt (0) W) = An(W)] W)

An(r)
—(tg+ hy/T)/N Pn(A) = Ao(R)
(tr+ h/T)/N

N —] i m—
Tl —tr/N

B /L’/ Double row

transfer matrix
~ e—21Ht/N+...

A graphical representation of the unnormalized finite Trotter number approximant to the
dynamical two-point function [SAKAI 07], hg ‘energy scale’, tg = —ihgt
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Thermal form factor series

Double row transfer matrix versus quantum transfer matrix

DRTM
o TL(=A)t, (A) = eM/hatO(V) time
translation

o PBCs in space direction — BAEs:
p(L) = Z + scattering

o H hermitian, real spectrum, gapped
or gapless

o {A;} Bethe roots, continuously
distributed for L — oo

o For L — oo described by linear
integral equations

Frank Géhmann (BUW — Faculty of Sciences)

QTM

t(0) ‘space translation’
PBCs in time direction — BAEs:
g(A) = (2n—1)inT + scattering
t(0) non-hermitian,

JE
pn(0) = e & % correlation length
and phase
{A\;} Bethe roots, continuously
distributed only for T — 0, at every
finite T, a set with a single
accumulation point
Described by non-linear integral
equations
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Thermal form factor series

Form factor series expansion in the thermodynamic limit

o Sets of consecutive integers are denoted [, k], where j, k € Z, j < k. We consider
dynamical correlation functions of two local operators
1 [4 1
X1 =x"x, Y1 =yl

where x(j),y(k) € EndC9. ¢ and r are lengths of X and Y. We shall assume that
these operators have fixed U(1) charge (or ‘spin’) s € C,

[, X1 q] = sOOXp1ep . [®, Y] =s(Y) Vi
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Thermal form factor series

Form factor series expansion in the thermodynamic limit

o Sets of consecutive integers are denoted [, k], where j, k € Z, j < k. We consider
dynamical correlation functions of two local operators

X[ =", Y11 =y

where x(j)7y(k) € EndC9. ¢ and r are lengths of X and Y. We shall assume that
these operators have fixed U(1) charge (or ‘spin’) s € C,

[, X1 q] = sOOXp1ep . [®, Y] =s(Y) Vi

Theorem (GKKKS17 + GK)
(X1, O Y1 pmrrmy )7 = 15X
o Z (Wol[Tidpa g trix W T(0)}W,) (Wl Il tr{y7(0)}|Wo)
li
Al (Wo|Wo)AL(0) (Wn|Wn)AG(0)

xPol0)” <pin((%§\,“)) )
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Thermal form factor series

Form factor series expansion in the thermodynamic limit

o Sets of consecutive integers are denoted [, k], where j, k € Z, j < k. We consider
dynamical correlation functions of two local operators

X[ =", Y11 =y

where x(j),y(k) € EndC9. ¢ and r are lengths of X and Y. We shall assume that
these operators have fixed U(1) charge (or ‘spin’) s € C,

[, X1 q] = sOOXp1ep . [®, Y] =s(Y) Vi

Theorem (GKKKS17 + GK)
Xpr.aOY4mrtm] )7 = o—ihts(X)
. Z (Wol T2y o trix O T(O) W) (Wl Ty g triy® T(0)} o)
li
o (ValV)An(0) Vo V) A5(0)

roper normalization? p"([ﬂ)
proper normalization x pn(0)™ < N

Pn(— ’ﬁ))
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o In order to have good properties of the thermal form factors, we rather would like to
divide by (Wo(h)|Wn(h))(Wn(h)|Wo(h)). But (Wo(h)[Wn(h)) = (Wn(h)[Wo(h)) =0
forn#0



XXZ, spin-zero operators

Properly normalized thermal form factors for spin-zero operators in XXZ

o In order to have good properties of the thermal form factors, we rather would like to
divide by (Wo(h)[Wn(h))(Wa(h)[Wo(h)). But (Wo(h)|Wn(h)) = (Wa(h)[Wo(h)) =0
forn#0

o Way out: different magnetic fields,
(Wo(M)[Wa(h)(Wa(h)[Wo(h)) — (Wo(h)|Wn(h'))(Wn(h)[Wo(h))

which is generally non-zero if |W,(h')) has pseudo-spin zero
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XXZ, spin-zero operators

Properly normalized thermal form factors for spin-zero operators in XXZ

o In order to have good properties of the thermal form factors, we rather would like to
divide by (Wo(h)[Wn(h))(Wa(h)[Wo(h)). But (Wo(h)|Wn(h)) = (Wa(h)[Wo(h)) =0
forn#0

o Way out: different magnetic fields,
(Wo(M)[Wa(h)(Wa(h)[Wo(h)) — (Wo(h)|Wn(h'))(Wn(h)[Wo(h))
which is generally non-zero if |W,(h')) has pseudo-spin zero

o This leads us to define the amplitude and twisted eigenvalue ratio

(Wo(MWn(H))(Wn(H)[Wo(h))
(Wo(h)[Wo(h))(Wa(H)[Wn(H))’

An(AlH)
No(Alh)

An(h,H) = pn(Alh,H) =

as well as the properly normalized form factors

(Wo(h)|T(&1[M) @@ T(E|n)[Wn(H))
(Wo(h)|Wa(H)) TTj—1 An(EjIH)

(Wn(M)IT(Gt|h) @---@ T(E|h)[Wo(h))
(Wn(H)[Wo(h)) ITji=1 Mo (&l )
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XXZ, spin-zero operators

Dynamical correlation functions of elementary blocks of spin-zero operators

Corollary

Using these functions the two-point functions of spin-zero elementary blocks can be written

as

(erp, -

) orinl ersl )y =

A ZAn(hh)pn(oW”(pn_“M)z

N—soo H—h & e—0 & pn (L [hH

Yr--Ar
T g, e Baln VTS (o, Gl )
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XXZ, spin-zero operators

Dynamical correlation functions of elementary blocks of spin-zero operators

Corollary

Using these functions the two-point functions of spin-zero elementary blocks can be written
as

((erg, - eeg ) () erimf, .- erimy )7 =

] N
Pn(—zn|h:H) )5
lim lim lim An(h, 0 o|h, Y™ T KN 2
N—seo H—h CkHOZ (s )Pa(01h, 1) ( pn(Gk [h,H)

Y1--Yr
T g, e Baln VTS (o, Gl )

For n = 0 the thermal form factors reduce to the generalized reduced density matrix

Din(Etye o &mlh ) = FE &, Emlh ) = TS (G, Bl M )

studied intensively in the literature by means of the algebraic Bethe ansatz [BG09] and by
‘the Fermionic basis approach’ [BJMST05,BJMST07,BJMST09,BJMS09,JMS09]
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XXZ, spin-zero operators

General 6-staggered inhomogeneous monodromy matrix

o The o-staggered monodromy matrix: Fix M € N. For j € [0, M] let V; = C9. For
je[1,M] fixo; € {—1,1},v; € C. Leto = (01,...,0m), V= (V1,...,Vy) and

Roj(A,v)) ifo;=1
Ay = {20 T

Rl-th(Vj,k) if 6; = —1,

where t; denotes the transposition with respect to the first space R is acting on. By
definition the o-staggered monodromy matrix To(A|o, Vv, h) € End (®j"i0 Vi) is

N
To(Mo,v,h) =80(h/T) ] A (hv)
jel1.mM]

Here 8(«) = e*°“/2, and the arrow above the product indicates descending order
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XXZ, spin-zero operators

General 6-staggered inhomogeneous monodromy matrix

o The o-staggered monodromy matrix: Fix M € N. For j € [0, M] let V; = C9. For
je[1,M] fixo; € {—1,1},v; € C. Leto = (01,...,0m), V= (V1,...,Vy) and

) H07j(7u7\/j) if 6; =1
v =4 |
R/-,O(Vj,k) if 6; = —1,

where t; denotes the transposition with respect to the first space R is acting on. By
definition the o-staggered monodromy matrix To(A|o, Vv, h) € End (®j"i0 Vi) is

2
To(Mo,v,h) =80(h/T) ] A (hv)
jel.m]
Here 8(«) = e*°“/2, and the arrow above the product indicates descending order
o Corresponding form factors (this is now what we love)
(Wo(o,v,h)|T(E1|o,v,H) Q- @ T(Em|o,v,H)|Wa(o,v,H))
<\U0(67V7 h)\‘“n(07V7’7')>Hjm:1 /\n(éj‘G,V,h/)

<\|Jn(G,V, h,)l T(£1 ‘07\’7 h) X T(aﬂ'l'GvVv h)‘\UO(vav h)>
<\|/n((5,V,h’)‘\UO(G,V,h)> H/m:1 /\0(&/|G,V, h)

F A (Elo,v,h o) =

Tom(Elo,v.h i) =
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XXZ, spin-zero operators

Properties of the thermal form factors of spin-zero operators

Define pn(Alo, v, b, H) = An(A|o,v, 1) /Ao(Mo,v, h), o= (h— M) /2yT

Lemma

@ Normalization condition
e
tr1,.m{FmElo,v,hH)} =
@ Reduction relations
trm{?nm(mc V h h } gjnm 1((&17 §M71)|G7V7h7h/)7
(+
try {15 (Elo,v, b, 1)} = pi (E4lo, v, h, 1) 5 P )z Em)lo,v, 1)
@ Exchange relation. Let R = PR. Then
w2 4L 4L vz
B (& &4 1)F S Elo,v, b 1) = TS (€M 4110, v, b K )Ry 1 (8, 81)

forje[1,m—1]
@ U(1) symmetry. For anyx € C

[55) Lo, v, h, 1), (8(x))°™] =0
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XXZ, spin-zero operators

Properly normalized thermal form factors for spin-zero operators in XXZ

Lemma

® Row reflection (‘crossing’)

(+
FEaElo,v, h,H) = FEDEloy,vs), 1)
for allj € [1,M]
® Commutativity of rows
55n(Elo.v.h i) = 55 (EloP,vP, h )

forall P € GM
@ TP property

g (&\ovhh’)—[np (éj|o,v,h,h’)]
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XXZ, spin-zero operators

Properly normalized thermal form factors for spin-zero operators in XXZ

Lemma

@ The functions 3”5, m(E|o, v, h,h') are meromorphic in all&;, j € [1,m]
@ Asymptotic behaviour

S| @
@ |3

ﬂ\q == s

dim _FHEI0 v, 1) = FL (1 Emn)loy, o)

. = — 0
Imﬁl,:,ﬂioo?’g;n)l(g‘(j’v’n h/) = 3:El;n3—1 ((§1 poco 7&"7*1 )‘G,V,h, h/ {’;(

@ Discrete form of the reduced q-Knizhnik-Zamolodchikov equation [AK12]. The
. ) . o ] -
functions ;. satisfy the ‘discrete functional equations

—_ | — ~—|~—
—— (-

gﬁ%l)?((& pooo aém—1 7&:”’7 717)}6—7\’7177 h/) = pi1 (E_,m‘(? )V, h h/)

xtro{ T8 Eml& TG (Elo— v, b, H)O Po.mGh T1 0;m(EmlE. 1)}
if&m = vy
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o The thermal form factors can be calculated from their properties or by the algebraic
Bethe Ansatz (using Slavnov’s scalar product formula)



XXZ, spin-zero operators

Calculating the form factors

o The thermal form factors can be calculated from their properties or by the algebraic
Bethe Ansatz (using Slavnov’s scalar product formula)

o The thermal form factor of the magnetization operator follow from the reduction
relations

Pn(Clh,H) — 3(q*+q %)
qocf qf(X
(g% +q*) = 1/pa(&|h,H)
qOL _q—oc

tr{ 1?3\ (¢lh, 1)) =

tr{ 30?90 )(Eln A} =
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XXZ, spin-zero operators

Calculating the form factors

o The thermal form factors can be calculated from their properties or by the algebraic
Bethe Ansatz (using Slavnov’s scalar product formula)

o The thermal form factor of the magnetization operator follow from the reduction
relations

pn(Glh,H) — ;(q +q%)
q*—q ¢

3(@*+97%) —1/pa(E|h,H)
qOL_q—(X

{37 TS (Cln )} =

tr{ 3075\ Eln 1)} =
o This allows us to conclude that
+

’ngnh E_,Iém An(h,H) tr{(jzfr"n1 (&lh, h)}tr{czﬁ"gﬂ)((‘;\h? n)}

=2T2(0% An(h. 1))

h’:h(p”(o‘hv h) 72+1/pn(0|h’ h))
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o The form factors of the magnetic current operator
d=-2iJ(c” ®c" -6t ®05")

follow by means of the reduction relation and the exchange relation

lim tr{i(o7 of — o 03 )T (€, Lol 1)} ~ — SNCDPa(ErlR )

Ll qgt—q“
ot Sh (1, /(61 1)
Jim tr{i(05 0% ~07705)3 061 Ealn )} ~ T



XXZ, spin-zero operators

Calculating the form factors

o The form factors of the magnetic current operator
J=-2iJ(c- @6t —c"®0")

follow by means of the reduction relation and the exchange relation

Y)Pn(Gilh,h
§2|[>“§1 tr{i(cy 03 — o0, )?% (CREVNHIRS %

¥)9,1/pn(&1[h, h)
ihmi tr{i(c; 05 —o; (52) n2 @1»&2"7 W)}~ soc g

o Leading (for n # 0) to

Jim, tm An(h ) {31252 1 el ) e (812752 (G Caln 1)

12 2
— sk () LT @R ()] (P20

Frank Géhmann (BUW — Faculty of Sciences) dynamical cfs of local ops 9.2.2023 16/32



XXZ, spin-zero operators

Calculating the form factors — nonlinear integral equations

Two functions, the bare energy

_ 4J(A%-1)

€o(r)=h A —cos(2))

and the kernel function
K(X) = ctg(A—1iy) — ctg (A +1y)
are needed in the definition of the non-linear integral equation

_&(A—iv/2)

Inap(A|h) = 7

* /e %KO‘_“) Ing,(1+an)(ulh)

The simple closed contours Cp, are such that 0 € IntCp,, A+iy€ ExtCpif A € IntCp, and

ap(Alh)
dv—"" 2 _ =0
/n 1+ ap(Alh)

The function Ine,_ (1 + ap) is the logarithm along the contour €,
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XXZ, spin-zero operators

Calculating the form factors — linear integral equations

Functions G,(,i) are defined as the solutions of the linear integral equations

G 08) = ¢ ctg (A—&+iy) —pz " (&lh, ) ctg (A — &)
~ [ o 07 K~ ) €5 (1)

Here € € Int ef,i),
Ka(A) = q *ctg (A —iy) — g% ctg (A +iv)

is a deformed version of the kernel function, and the integration ‘measures’ are

_ dApp(Alh,H)
W= 2mi(1 +an(MH))

dr _
damS o) = , amt)
n () 2mipn(Alh, W) (14 ag(A|h)) "
The contours Gf,i) are deformations of the contour C, in such a way that the zeros of
pn(-|h, H') are excluded from €, for (?S,J“), while the poles of pp(+|h, ') are excluded from C,,

for Ggf).
In preparation of the following lemma we finally introduce the short-hand notations

dmsI () = ao(MmdmSI (), dm(A) = ap(MH )dm )

Frank Géhmann (BUW — Faculty of Sciences) dynamical cfs of local ops 9.2.2023 18/32



XXZ, spin-zero operators

Calculating the form factors — multiple integral representation

Lemma (following BG09)

Forall§; € Int Ggi), j=1,...,m, the form factors ?ﬁ,ﬂ (E|h, H') of spin-zero operators have
the multiple-integral representations

T e 1) = [H [ am$I ) 04)

[T [ om0 5, )]

j=p+1
detm{ Gn X]a&k)}

X
[T <jck<msin(Aj — Ak +iy)sin(Ex — &)

where

re) = [T an-50] | 1T snth-e )

k=x-+1

p is the number of plusses in (B;)/Z4 and the sequence (x;)"; is defined as

e j=1,....p
xi={ 1 .
€1 j=p+1,....m

Sf being the position of the jth plus in (B;)" that of the jth minus in (oc,)

/1’/

Frank Géhmann (BUW — Faculty of Sciences) dynamical cfs of local ops 9.2.2023 19/32



o The double integrals can be factorized and reduce to a linear combination of just
two functions

Fo _ ~E1 h, hl
) = [ a0y 6y - TP CRE)
Wi (E1,82) = i o dm$F () (g ctg (A — & +1y)

—pE1 (& h ) ctg (A —&1)) G5 (1, &)



XXZ, spin-zero operators

Calculating the form factors — factorization

o The double integrals can be factorized and reduce to a linear combination of just
two functions

q)(i)(&) _ / dm(i)(X) G(i)(;L £) = qt*— p# (Elh,H)
n Jew n n s —Ta o

qia _ an
Vi G e) = i / dmi (1) (g% ctg (A~ & +i)

— P & lh W) etg (M —E1)) G5 (o)

o The thermal form factors 3",(7 ")7l3 B "(&|h, ') are compatible with the Fermionic
basis of BJMST. Within the Fermionic basis approach all form factors become

polynomials in just two functions, the function pg,i) and a function (ng,i) that can
be obtained as

(9 (&0, galh ) = —te{ T8 (81, Bl )ef, 5 (Co. Falbf, (G, For—1)(1))
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XXZ, spin-zero operators

Calculating the form factors — factorization

o Using the latter formula we obtain the representation

b (&1, &l ) =
20 WS (&1, 8) + AW(L, —0) +2(p (&1, W) — pi (Bl 1)) W(G, 1)

Here { = ei(51—%2) y({, o) = § ((CE +11)) and A is the difference operator whose

action on a function f is defined by Af({) = f(qC) — f(q~'¢)
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XXZ, spin-zero operators

Calculating the form factors — factorization

o Using the latter formula we obtain the representation

b (&1, &l ) =
20 WS (&1, 8) + AW(L, —0) +2(p (&1, W) — pi (Bl 1)) W(G, 1)

Here { = ei(51—%2) y({, o) = ¢ ((CE +11)) and A is the difference operator whose
action on a function f is defined by Af({) = f(qC) — f(q~'¢)
o The form factors of the energy density operator
e/d=2(c"@c" +ot o)+ L(g+q ")o*®c?

are the simplest example of form factors that involve (og,i)
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o The form factors of the energy density operator
e/d=2(c"@c" +ot o)+ L(g+q ")o*®c?

are the simplest example of form factors that involve (og,i)

o Forn#0

/'!’Ignhé |€Im An h, h)tr{81 2?,72 (6,1,&2“7 h,)}tl’{81 2?,72 (C17C_,2|h h )}

2 h2 _
= JST(Y)(B%/A,,(h, 1)), resw—n®5 ) (0,0]h, i) resy—p b (0,0]h, )
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XXZ massive, low-T

Calculating the amplitudes, A > 1 [BGKS 20]

o Starting point for the study of the universal amplitude is Slavnov’s scalar product
formula which we use for the four ‘scalar products’ its definition:

pot ) — VO IA) UV (h)) [ ol 1)
"= o (W (R) (Wn(W) Wn()) ~ |14 palayh, )

() e(t—2y) e(u—M) e(h—u))
detM{ oG A~ T et } detM{ TrelOa 7]~ TR ) }

detM{ﬁ/ + k;h &S)}det/\//{m} det/\/l{sj + K(#’L "L;:))}detM{m}
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Calculating the amplitudes, A > 1 [BGKS 20]

o Starting point for the study of the universal amplitude is Slavnov’s scalar product
formula which we use for the four ‘scalar products’ its definition:

— (Wo(M)[Wo(M)NWa(H)[Wa(K)) ;5 Palujlh. )

() e(t—2y) e(u—M) e(h—u))
detM{ oG A~ T et } detM{ 1+52(w) = T a7 }

detM{B/ + k}h &g)}detM{m} detm{ﬁj + am W))}detl\/l{m}

At = Lo(WIVaH) (WnlH ) Wo(h)) LM Pn(kjlh,h’)}

o This has to be analysed for N — co. In general Fredholm determinants are obtained.
However, for A > 1 and T — 0, thanks to the no-string hypothesis,

5(Zo)
0%

Aol H) = [T v ] b} det (8,5}

detgt{a}
x (1+0(T))

x,#exnelj,,
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XXZ massive, low-T

Explicit form factor series for T =0, A > 1, |h| < hy = 4Jsh(y)92(0|q)

The dynamical two-point functions (of spin-zero operators) of the XXZ chain in the antifer-
romagnetic massive regime at T = 0 have the form-factor series representation

Xpn Ot mrsm)) =

(—1)km / du / (20) s oo () —telA))
egw (2 Jeg (2m)t Jey (gny Axy’ (U, V|k) e et
k=0,1

with integration contours Cp =[5, 3] — 3’ +idand Cp=[-3,3]+ %’ +i8’, where
8,8’ > 0 are small
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Explicit form factor series for T =0, A > 1, |h| < hy = 4Jsh(y)95(0|q)

The dynamical two-point functions (of spin-zero operators) of the XXZ chain in the antifer-
romagnetic massive regime at T = 0 have the form-factor series representation

Xpn Ot mrsm)) =

(71)km/ du / dv (a0 T (PO —te(A))
kg\l (2 Jey (2m)t Jey (2m)t Axy’ (U, V]k) et reuey
k=0,1

with integration contours Cp =[5, 3] — %{ +idand Cp=[-3,3]+ %’ +i8’, where
8,8 > 0 are small
Two cases worked out so far

@ X =Y = o7, two-point function of local magnetization (C. Babenko, F. Gohmann,
K. Kozlowski, J. Sirker, and J. Suzuki, Phys. Rev. Lett. 126, 210602 (2021))

— Ag) spectral function

@ X=Y=J=-2iJ(c” ®c" -6 ®c"), correlation function of magnetic current
densities (with K. Kozlowski, J. Sirker, and J. Suzuki, SciPost Phys. 12, 158 (2022))
— A%) spin conductivity
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XXZ massive, low-T

Dispersion relation

8 T -
A=15
6 [ -
In the antiferromagnetic massive regime r ]
the dispersion relation of the elementary 41 .
excitation can be expressed explicitly in H .
terms of theta functions 9l _
T [ da(h+iv/2|97) I ]
7\4 - = + }\47 lln (7 = a

P =5 D(h—17/2]eP) 3 o
93() |
g(A) = —2Jsh(y)0394 —2r i
) (D504 52 5 |
Here p is the momentum and € is the —4 a
dressed energy (for h=0) H .
Interpretation: dispersion relation of holes —6r h

S 0 1
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XXZ massive, low-T

Amplitudes

o The integrands in each term of our form factor series are parameterized in terms of
two sets U = {u,-}f=1 and V = {vk}f(z1 of ‘hole and particle type’ rapidity variables
of equal cardinality £. For sums and products over these variables we shall employ
the short-hand notations

B _ [heu /()
Y =Y -y ), I fm*%

AEUSY AeU A€V AEUSV [Ire
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XXZ massive, low-T

Amplitudes

o The integrands in each term of our form factor series are parameterized in terms of
two sets U = {u,-}j’r/=1 and V = {vk}ﬁ:1 of ‘hole and particle type’ rapidity variables
of equal cardinality £. For sums and products over these variables we shall employ
the short-hand notations

Y =Y -y, T fm:mL;&;

AEUSY AeU A€V AEUSV [Irev

o The amplitudes factorize in a part which depends on the operators X and Y and a
universal weight

AZD k) = 75 (U, VIK)
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XXZ massive, low-T

Amplitudes

o The integrands in each term of our form factor series are parameterized in terms of
two sets U = {u,-}j’r/=1 and V = {vk}ﬁ:1 of ‘hole and particle type’ rapidity variables
of equal cardinality £. For sums and products over these variables we shall employ
the short-hand notations

Y =Y -y, T “MZHKL;&;

AEUSY AeU A€V AEUSV [Irev

o The amplitudes factorize in a part which depends on the operators X and Y and a
universal weight

AG) (W VIK) =55 (W, Vlk)
o For short operators like 6% or J the operator-dependent part is rather simple
2/ .
FEV (U, Vik)= 4sin? (3 (tk + Lacucv (1)) )

) 2
75 W VI0= § (Trcucve®)

and should be generally related to the theory of factorizing correlation functions
(H. Boos, M. Jimbo, T. Miwa, F. Smirnov and Y. Takeyama 2006-10)
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We introduce ‘multiplicative spectral parameters’ H; = €2, Py = €% and the following
special basic hypergeometric series

a2 {q?fe #k’{Hm}l 4 at20
{Pm T ST

{q6 Pm m;ék]’{q4 H,n}é g q4+2a>
’{q4Pm 75;(,7{(7 Hm}é

&1(Pk, ) = 0Py (

. H
O (P, Pj,0) = 2¢Pop_1 (



XXZ massive, low-T

Universal weight

We introduce ‘multiplicative spectral parameters’ H; = €2, Py = €% and the following
special basic hypergeometric series

—2 {qz Pk k7{ }/
q>1("3/(7(X’) = 254)2[—1 ( m# 2 Pk Vi 'q4_‘q4+20L>
{Pm m;ék’{q }

2P ¢ 6P 4 Py
.95 {05 Ad g m

Do (Pk, Pj,01) = 2¢Pop—1 ( 8';5 . p/ m;ﬁkj 5 pl ¢ 4, gtte
{q m;ﬁk/?{q }

We further define
Vo (Px, Py, &) = ¢**ry( Pk, Py)®a(Px, P, )

where

Pm

2 2P ( 1_g2b ¢ _ B
r(Px, P) = q“ R [H Tr HH”’]

(1 )(1 _q4 P/ nT;é: m=11 _q2/-%7

and introduce a ‘conjugation’ f(H;, Px,q*) = f(1/H;,1/Px,q~%)
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The core part of our form factor densities, is a matrix M

— )7 ;
30553 [81(8.0)- S5 01 (8,0)] 189 (e 2.0~ S et 0
where
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XXZ massive, low-T

Universal weight

The core part of our form factor densities, is a matrix M

_ )y _ )y,
Mij = 8;| ®1(P;,0) — $(+)82; ¢1(P]’70):| —(1-9;) {\VQ(F’,-?P,-p) - $(+)82; V2 (P}, P;,0)

where

i k1
00 =" [T re(1+5ra(552), £=-2-2 ¥ &
HeuUsy reUSY

By M we denote the matrix obtained from M upon replacing x; = —y;. Finally

q“( 217)624 (1 + 217)
(14 2h) G2 (3 + 25)

:)\‘ r
=M=
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XXZ massive, low-T

Universal weight

The core part of our form factor densities, is a matrix M

_ )y _ )y,
Mij = 8;| ®1(P;,0) — $(+)82; ¢1(P]’70):| —(1-9;) {\VQ(F’,-?P,-p) - $(+)82; V2 (P}, P;,0)

where

: Tk 1
00 =" ] TG+ )Te(155). T=-% -5 ¥ &
HeuUsy reUSY

By M we denote the matrix obtained from M upon replacing x; = —y;. Finally
2
q“( 217)6 4 (1 + 217)
1 A
(1+ 217)654 (z+32)
Then the universal weight of the form factor amplitudes is

W(Zé)(u7Vk):(2ﬁ?é):)>2|: H E(x—y)}d?t{M}d?t{ﬁ[}d?t(w)z

AueUSY

:)\‘ r
=M=
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Numerical efficiency

XXZ massive, low-T

B
— tDMRG | T
o I ,
u I]+Iz 4
° I|+12+I3

Frank Géhmann (BUW — Faculty of Sciences)

15 20

dynamical cfs of local ops

Real part of (6%(1)03) — (¥ /92)?
for A = 1.2. Increasing number of
terms of the series taken into ac-
count

Real part of (of(t)o% ) —
(9 /92)2(=1)" for A = 1.2 and
different values of m
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XXZ massive, low-T

Numerical efficiency

T T T T

— real part 1
— imaginary part

(a) (o%(t)o3) — (—1)™d2/92 at long
times for A =1.2.

(b) Comparison of Re(c%(t)o3) —
(—=1)™9/2 /93 obtained by using the
form factor expansion (symbols) with
the two-spinon asymptotics (line) for
A =14

s ¢ 1 ® "b - T
100 102 104 3t 106 108 110
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XXZ massive, low-T

Numerical efficiency

7
L[ FT 20 I,
— q=m/2 3 — 1, (x100)
2
— q=m/4 &
T |=g=m8 5| ¢
—~ 1
S 4
S
de 3

I L ot
5 10 15 20
o/J

(a) (o%(t)o3) — (—1)™d2/92 at long
times for A =1.2.

(b) Comparison of Re(c%(t)o3) —
(—=1)™9/2 /93 obtained by using the
form factor expansion (symbols) with
the two-spinon asymptotics (line) for
A =14

S§%(q,w) for A = 2 and various wave
numbers q
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A=310=1 =1

0.25
02l direct FT i 1.5 —A=15 g
’ ——analytic formula — A=2
o — — A=3
) a
§) )
Q 0.1} B ©
~ ~
0.5 B
51072 g
0 . 0
0 5 10 15 20 25 0 5 10 15 20 25
w/J w/J

Left panel: comparison of the analytic result and the direct Fourier transformation for
¢=1and A =3. For the latter we used (J1(t)Jk+1), 0 < k <399 and 0 < tJ < 50

Right panel: Rec(® () for various A




XXZ massive, low-T

Two-spinon optical conductivity

Recall the elliptic module k, the complementary module k" and the complete elliptic integral K
=03/092, K =02/02, K=md3/2.
Further introduce two functions

T hy/k')2 — o2
(@) = & arcsn | YAD/KS Z 07
K hok [k

k) B(z) = 1 Gy (1+ 217) (%)
G (2) o= G (3 + 83) G (5 + 57)
where arcsn is the inverse of the Jacobi elliptic sn function
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XXZ massive, low-T

Two-spinon optical conductivity

Recall the elliptic module k, the complementary module k" and the complete elliptic integral K
=03/03, K =03/05, K=mnvj/2.

Further introduce two functions

r(0) = 7 arcsn (7(’7@/ KPP~ o2

hok /K

1 Gg (1 + 217) (%)
k], B(z)= 1o
). & GL(3) ok G (34 55)Cr (1 55)

where arcsn is the inverse of the Jacobi elliptic sn function

Then the two-spinon contribution to the real part of the optical conductivity of the XXZ chain at
zero temperature and in the antiferromagnetic massive regime can be represented as

aztk  B(r(o)) 3 1

8k’ A —cos(r(w)) 95(r(w)/2) \/((h//k’)z — ?) (w2 — 2)

where ® € [hy, hy/k']. Outside this interval it vanishes

Rec® () =
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@ We have developed a thermal form factor approach to the dynamical
two-point correlation functions of arbitrary local operators in fundamental
integrable models of Yang-Baxter type
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thermal form factors for spin-zero operators in the XXZ chain

@ The properly normalized form factors have properties very similar to those of
the generalized reduced density matrix: they satisfy a form of rgKZ equation
and they can be represented as multiple integrals that factorize

@ We have applied our approach to the dynamical two-point functions of the
magnetization and of the spin current for the XXZ chain in the massive
antiferromagnetic regime and in the low-T limit

® For T — 0 we have obtained explicit expressions for the form factor
amplitudes that contain only finite determinants and no additional
summations
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integrable models of Yang-Baxter type

@ We found factorization into a universal amplitude and properly normalized
thermal form factors for spin-zero operators in the XXZ chain

@ The properly normalized form factors have properties very similar to those of
the generalized reduced density matrix: they satisfy a form of rgKZ equation
and they can be represented as multiple integrals that factorize

@ We have applied our approach to the dynamical two-point functions of the
magnetization and of the spin current for the XXZ chain in the massive
antiferromagnetic regime and in the low-T limit

® For T — 0 we have obtained explicit expressions for the form factor
amplitudes that contain only finite determinants and no additional
summations

® The resulting TFFSs for the two-point functions are numerically highly
efficient
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