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Introduction

StatMech of quantum chains (discrete space, continuous time)

Quantum chain:

HL =
(
Cd
)⊗L finite dimensional Hilbert space

HL ∈ EndHL Hamiltonian

xj = id⊗(j−1)⊗x⊗ id⊗(L−j), x ∈ End
(
Cd
)

local operator

QStatMech:

xj 7→ xj (t) = eiHLt xj e−iHLt Q: Heisenberg time evolution

ρL(T )[X ] =
tr
{

e−HL/T X
}

tr
{

e−HL/T} StatMech: canonical density matrix

Linear response theory (‘Kubo theory’) connects the response of a large quantum
system to time-(= t)-dependent perturbations (= experiments) with dynamical
correlation functions at finite temperature T

〈x1(t)ym+1〉T = lim
L→∞

ρL(T )[x1(t)ym+1]
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Introduction

Prime example of an integrable spin chain Hamiltonian

The XXZ model

HL(∆) = J
L

∑
j=1

{
σ

x
j−1σ

x
j + σ

y
j−1σ

y
j + ∆σ

z
j−1σ

z
j
}
− h

2

L

∑
j=1

σ
z
j

J > 0, h ∈ R, ∆ = ch(γ) ∈ R, q = e−γ

Main goal of my research: Calculate〈
σ

z
1(t)σ

z
m+1

〉
T ,

〈
σ
−
1 (t)σ

+
m+1

〉
T , . . .

explicitly for all values of m, t , T and ∆, h!

State of the art: Dynamical correlation functions at finite temperature not known
for any Yang-Baxter integrable lattice model, except for the XX model

HXX = HL(0)

For the XX model the longitudinal two-point functions are

〈
σ

z
1(t)σ

z
m+1

〉
T −

〈
σ

z
1
〉2

T =

[∫
π

−π

dp
π

ei(mp−tε(p))

1 + e−ε(p)/T

][∫
π

−π

dp
π

e−i(mp−tε(p))

1 + eε(p)/T

]
where ε(p) = h−4J cos(p)
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Introduction

Longitudinal correlation functions of XX model

This simple expression can be analyzed numerically and asymptotically by means
of the saddle point method

0 5 10 15 20 25 30 35

0

5 · 10−2

0.1

0.15

t

R
e
C
(1
2,
t|1

,0
.2
)

timelike
spacelike

Real part of the connected longitudinal two-point function of the XX chain at
m = 12, T = 1, h = 0.2 and J = 1/4 as a function of time
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Thermal form factor series

Dynamical two-point functions as a lattice path integral

Vertex model representation at finite Trotter number N

1

1

−(tR + hR/T )/N

(tR + hR/T )/N

−(tR + hR/T )/N
(tR + hR/T )/N

tR/N
−tR/N

tR/N
−tR/N

m + 1

Y

X
N

2N

L

eαϕ̂/T Quantum
transfer matrix

t(λ)|Ψn〉= Λn(λ)|Ψn〉
ρn(λ) = Λn(λ)

Λ0(λ)

Double row
transfer matrix

∼ e−2iHt/N+...

A graphical representation of the unnormalized finite Trotter number approximant to the
dynamical two-point function [SAKAI 07], hR ‘energy scale’, tR =−ihR t
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Thermal form factor series

Double row transfer matrix versus quantum transfer matrix

DRTM

t⊥(−λ)t⊥(λ) = e2λH/hR+O(λ2) time
translation

PBCs in space direction→ BAEs:
p(λ) = 2πn

L + scattering

H hermitian, real spectrum, gapped
or gapless

{λj} Bethe roots, continuously
distributed for L→ ∞

For L→ ∞ described by linear
integral equations

QTM

t(0) ‘space translation’

PBCs in time direction→ BAEs:
ε(λ) = (2n−1)iπT + scattering

t(0) non-hermitian,

ρn(0) = e
− 1

ξn
+iϕn , correlation length

and phase

{λj} Bethe roots, continuously
distributed only for T → 0, at every
finite T , a set with a single
accumulation point

Described by non-linear integral
equations
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Thermal form factor series

Form factor series expansion in the thermodynamic limit

Sets of consecutive integers are denoted Jj,kK, where j,k ∈ Z, j ≤ k . We consider
dynamical correlation functions of two local operators

XJ1,`K = x(1)
1 · · ·x

(`)
` , YJ1,rK = y(1)

1 · · ·y
(r)
r

where x(j),y(k) ∈ EndCd . ` and r are lengths of X and Y . We shall assume that
these operators have fixed U(1) charge (or ‘spin’) s ∈ C,

[Φ̂,XJ1,`K] = s(X)XJ1,`K , [Φ̂,YJ1,rK] = s(Y )YJ1,rK

Theorem (GKKKS17 + GK)

〈
XJ1,`K(t)YJ1+m,r+mK

〉
T = e−iht s(X)

× lim
N→∞

∑
n

〈Ψ0|∏y
k∈J1,`K tr{x(k)T (0)}|Ψn〉
〈Ψ0|Ψ0〉Λ`

n(0)

〈Ψn|∏y
k∈J1,rK tr{y(k)T (0)}|Ψ0〉
〈Ψn|Ψn〉Λr

0(0)

×ρn(0)m
(

ρn
( tR

N

)
ρn
(
− tR

N

)) N
2

Frank Göhmann (BUW – Faculty of Sciences) dynamical cfs of local ops 9.2.2023 8 / 32



Thermal form factor series

Form factor series expansion in the thermodynamic limit

Sets of consecutive integers are denoted Jj,kK, where j,k ∈ Z, j ≤ k . We consider
dynamical correlation functions of two local operators

XJ1,`K = x(1)
1 · · ·x

(`)
` , YJ1,rK = y(1)

1 · · ·y
(r)
r

where x(j),y(k) ∈ EndCd . ` and r are lengths of X and Y . We shall assume that
these operators have fixed U(1) charge (or ‘spin’) s ∈ C,

[Φ̂,XJ1,`K] = s(X)XJ1,`K , [Φ̂,YJ1,rK] = s(Y )YJ1,rK

Theorem (GKKKS17 + GK)

〈
XJ1,`K(t)YJ1+m,r+mK

〉
T = e−iht s(X)

× lim
N→∞

∑
n

〈Ψ0|∏y
k∈J1,`K tr{x(k)T (0)}|Ψn〉
〈Ψ0|Ψ0〉Λ`

n(0)

〈Ψn|∏y
k∈J1,rK tr{y(k)T (0)}|Ψ0〉
〈Ψn|Ψn〉Λr

0(0)

×ρn(0)m
(

ρn
( tR

N

)
ρn
(
− tR

N

)) N
2
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proper normalization? ×ρn(0)m
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( tR

N
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− tR

N
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XXZ, spin-zero operators

Properly normalized thermal form factors for spin-zero operators in XXZ

In order to have good properties of the thermal form factors, we rather would like to
divide by 〈Ψ0(h)|Ψn(h)〉〈Ψn(h)|Ψ0(h)〉. But 〈Ψ0(h)|Ψn(h)〉= 〈Ψn(h)|Ψ0(h)〉= 0
for n 6= 0

Way out: different magnetic fields,

〈Ψ0(h)|Ψn(h)〉〈Ψn(h)|Ψ0(h)〉 → 〈Ψ0(h)|Ψn(h′)〉〈Ψn(h′)|Ψ0(h)〉

which is generally non-zero if |Ψn(h′)〉 has pseudo-spin zero

This leads us to define the amplitude and twisted eigenvalue ratio

An(h,h′) =
〈Ψ0(h)|Ψn(h′)〉〈Ψn(h′)|Ψ0(h)〉
〈Ψ0(h)|Ψ0(h)〉〈Ψn(h′)|Ψn(h′)〉 , ρn(λ|h,h′) =

Λn(λ|h′)
Λ0(λ|h)

as well as the properly normalized form factors

F
(−)
n;` (ξ1, . . . ,ξ`|h,h′) =

〈Ψ0(h)|T (ξ1|h′)⊗·· ·⊗T (ξ`|h′)|Ψn(h′)〉
〈Ψ0(h)|Ψn(h′)〉∏`

j=1 Λn(ξj |h′)

F
(+)
n;r (ζ1, . . . ,ζr |h,h′) =

〈Ψn(h′)|T (ζ1|h)⊗·· ·⊗T (ζr |h)|Ψ0(h)〉
〈Ψn(h′)|Ψ0(h)〉∏r

j=1 Λ0(ζj |h)
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XXZ, spin-zero operators

Dynamical correlation functions of elementary blocks of spin-zero operators

Corollary

Using these functions the two-point functions of spin-zero elementary blocks can be written
as 〈(

e1
α1
β1
. . .e`

α`

β`

)
(t)e1+m

γ1

δ1
. . .er+m

γr

δr

〉
T =

lim
N→∞

lim
h′→h

lim
ξj ,ζk→0

∑
n

An(h,h′)ρn(0|h,h′)m
(

ρn
(
− it

κN

∣∣h,h′)
ρn
( it

κN

∣∣h,h′)
) N

2

×F
(−)
n;`

α1...α`

β1...β`
(ξ1, . . . ,ξ`|h,h′)F(+)

n;r
γ1...γr

δ1...δr
(ζ1, . . . ,ζr |h,h′)

For n = 0 the thermal form factors reduce to the generalized reduced density matrix

Dm(ξ1, . . . ,ξm|h,h′) = F
(−)
0;m (ξ1, . . . ,ξm|h,h′) = F

(+)
0;m (ξ1, . . . ,ξm|h′,h)

studied intensively in the literature by means of the algebraic Bethe ansatz [BG09] and by
‘the Fermionic basis approach’ [BJMST05,BJMST07,BJMST09,BJMS09,JMS09]
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XXZ, spin-zero operators

General σ-staggered inhomogeneous monodromy matrix

The σ-staggered monodromy matrix: Fix M ∈ N. For j ∈ J0,MK let Vj = Cd . For
j ∈ J1,MK fix σj ∈ {−1,1}, νj ∈ C. Let σ = (σ1, . . . ,σM ), ν = (ν1, . . . ,νM ) and

R
(σj )
0,j (λ,νj ) =

R0,j (λ,νj ) if σj = 1

Rt1
j,0(νj ,λ) if σj =−1,

where t1 denotes the transposition with respect to the first space R is acting on. By
definition the σ-staggered monodromy matrix T0(λ|σ,ν,h) ∈ End

(⊗M
j=0 Vj

)
is

T0(λ|σ,ν,h) = θ0(h/T )
x
∏

j∈J1,MK
R

(σj )
0,j (λ,νj )

Here θ(κ) = eκσz/2, and the arrow above the product indicates descending order

Corresponding form factors (this is now what we love)

F
(−)
n;m (ξ|σ,ν,h,h′) =

〈Ψ0(σ,ν,h)|T (ξ1|σ,ν,h′)⊗·· ·⊗T (ξm|σ,ν,h′)|Ψn(σ,ν,h′)〉
〈Ψ0(σ,ν,h)|Ψn(σ,ν,h′)〉∏m

j=1 Λn(ξj |σ,ν,h′)

F
(+)
n;m (ξ|σ,ν,h,h′) =

〈Ψn(σ,ν,h′)|T (ξ1|σ,ν,h)⊗·· ·⊗T (ξm|σ,ν,h)|Ψ0(σ,ν,h)〉
〈Ψn(σ,ν,h′)|Ψ0(σ,ν,h)〉∏m

j=1 Λ0(ξj |σ,ν,h)
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XXZ, spin-zero operators

Properties of the thermal form factors of spin-zero operators

Define ρn(λ|σ,ν,h,h′) = Λn(λ|σ,ν,h′)/Λ0(λ|σ,ν,h), α = (h−h′)/2γT

Lemma

1 Normalization condition

tr1,...,m
{
F

(±)
n;m (ξ|σ,ν,h,h′)

}
= 1

2 Reduction relations

trm
{
F

(±)
n;m (ξ|σ,ν,h,h′)

}
= F

(±)
n;m−1((ξ1, . . . ,ξm−1)|σ,ν,h,h′) ,

tr1
{

q±ασz
1F

(±)
n;m (ξ|σ,ν,h,h′)

}
= ρ

±1
n (ξ1|σ,ν,h,h′)F(±)

n;m−1((ξ2, . . . ,ξm)|σ,ν,h,h′)

3 Exchange relation. Let Ř = PR. Then

Řj,j+1(ξj ,ξj+1)F
(±)
n;m (ξ|σ,ν,h,h′) = F

(±)
n;m (ξΠj,j+1|σ,ν,h,h′)Řj,j+1(ξj ,ξj+1)

for j ∈ J1,m−1K
4 U(1) symmetry. For any κ ∈ C[

F
(±)
n;m (ξ|σ,ν,h,h′),

(
θ(κ)

)⊗m]
= 0
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XXZ, spin-zero operators

Properly normalized thermal form factors for spin-zero operators in XXZ

Lemma

5 Row reflection (‘crossing’)

F
(±)
n;m (ξ|σ,ν,h,h′) = F

(±)
n;m (ξ|σιj ,νSj ,h,h

′)

for all j ∈ J1,MK
6 Commutativity of rows

F
(±)
n;m (ξ|σ,ν,h,h′) = F

(±)
n;m (ξ|σP,νP,h,h′)

for all P ∈SM

7 TP property

F
(−)
n;m

α1,...,αm

β1,...,βm
(ξ|σ,ν,h,h′) =

[ m

∏
j=1

ρ
−1
n (ξj |σ,ν,h,h′)

]
×
(
(qασz )⊗mF

(+)
n;m
)βm ,...,β1

αm ,...,α1
((ξm, . . . ,ξ1)|σ,ν,h,h′)
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XXZ, spin-zero operators

Properly normalized thermal form factors for spin-zero operators in XXZ

Lemma

8 The functions F
(±)
n;m (ξ|σ,ν,h,h′) are meromorphic in all ξj , j ∈ J1,mK

9 Asymptotic behaviour

lim
Imξm→±∞

F
(+)
n;m (ξ|σ,ν,h,h′) = F

(+)
n;m−1((ξ1, . . . ,ξm−1)|σ,ν,h,h′) θm

( h
T

)
tr
{

θ
( h

T

)}
lim

Imξm→±∞

F
(−)
n;m (ξ|σ,ν,h,h′) = F

(−)
n;m−1((ξ1, . . . ,ξm−1)|σ,ν,h,h′) θm

( h′
T

)
tr
{

θ
( h′

T

)}
10 Discrete form of the reduced q-Knizhnik-Zamolodchikov equation [AK12]. The

functions F
(±)
n;m satisfy the ‘discrete functional equations’

F
(±)
n;m
(
(ξ1, . . . ,ξm−1,ξm− iγ)

∣∣σ−,ν,h,h′)= ρ
∓1
n (ξm|σ−,ν,h,h′)

× tr0
{

T−1
⊥,0;m(ξm|ξ,h)F

(±)
n;m (ξ|σ−,ν,h,h′)σ

y
0P0,mσ

y
0T⊥,0;m(ξm|ξ,h′)

}
if ξm = ν1
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XXZ, spin-zero operators

Calculating the form factors

The thermal form factors can be calculated from their properties or by the algebraic
Bethe Ansatz (using Slavnov’s scalar product formula)

The thermal form factor of the magnetization operator follow from the reduction
relations

tr
{ 1

2 σ
z F

(+)
n;1 (ζ|h,h′)

}
=

ρn(ζ|h,h′)− 1
2 (qα + q−α)

qα−q−α

tr
{ 1

2 σ
z F

(−)
n;1 (ξ|h,h′)

}
=

1
2 (qα + q−α)−1/ρn(ξ|h,h′)

qα−q−α

This allows us to conclude that

lim
h′→h

lim
ξ,ζ→0

An(h,h′)tr
{

σ
z F

(−)
n;1 (ξ|h,h′)

}
tr
{

σ
z F

(+)
n;1 (ζ|h,h′)

}
= 2T 2(

∂
2
h′An(h,h′)

)∣∣
h′=h

(
ρn(0|h,h)−2 + 1/ρn(0|h,h)

)
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XXZ, spin-zero operators

Calculating the form factors

The form factors of the magnetic current operator

J =−2iJ
(
σ
−⊗σ

+−σ
+⊗σ

−)
follow by means of the reduction relation and the exchange relation

lim
ζ2→ζ1

tr
{

i(σ
−
1 σ

+
2 −σ

+
1 σ
−
2 )F

(+)
n;2 (ζ1,ζ2|h,h′)

}
∼− sh(γ)ρ′n(ζ1|h,h)

qα−q−α

lim
ξ2→ξ1

tr
{

i(σ
−
1 σ

+
2 −σ

+
1 σ
−
2 )F

(−)
n;2 (ξ1,ξ2|h,h′)

}
∼

sh(γ)∂ξ1
1/ρn(ξ1|h,h)

qα−q−α

Leading (for n 6= 0) to

lim
h′→h

lim
ξj ,ζk→0

An(h,h′)tr
{
J1,2F

(−)
n;2 (ξ1,ξ2|h,h′)

}
tr
{
J1,2F

(+)
n;2 (ζ1,ζ2|h,h′)

}
= 2sh2(γ)J2T 2(

∂
2
h′An(h,h′)

)∣∣
h′=h

(
ρ′n(0|h,h)

ρn(0|h,h)

)2
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XXZ, spin-zero operators

Calculating the form factors – nonlinear integral equations

Two functions, the bare energy

ε0(λ) = h− 4J(∆2−1)

∆− cos(2λ)

and the kernel function
K (λ) = ctg(λ− iγ)− ctg(λ + iγ)

are needed in the definition of the non-linear integral equation

lnan(λ|h) =− ε0(λ− iγ/2)

T
+

∫
Cn

dµ
2πi

K (λ−µ) lnCn
(1 +an)(µ|h)

The simple closed contours Cn are such that 0 ∈ IntCn, λ± iγ ∈ ExtCn if λ ∈ IntCn and∫
Cn

dλ
a′n(λ|h)

1 +an(λ|h)
= 0

The function lnCn
(1 +an) is the logarithm along the contour Cn
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XXZ, spin-zero operators

Calculating the form factors – linear integral equations

Functions G(±)
n are defined as the solutions of the linear integral equations

G(±)
n (λ,ξ) = q∓α ctg(λ−ξ + iγ)−ρ

±1
n (ξ|h,h′)ctg(λ−ξ)

−
∫
C

(±)
n

dm(±)
n (µ) K∓α(λ−µ)G(±)

n (µ,ξ)

Here ξ ∈ IntC
(±)
n ,

Kα(λ) = q−α ctg(λ− iγ)−qα ctg(λ + iγ)

is a deformed version of the kernel function, and the integration ‘measures’ are

dm(+)
n (λ) =

dλ

2πiρn(λ|h,h′)
(
1 +a0(λ|h)

) , dm(−)
n (λ) =

dλ ρn(λ|h,h′)
2πi
(
1 +an(λ|h′)

)
The contours C

(±)
n are deformations of the contour Cn in such a way that the zeros of

ρn(·|h,h′) are excluded from Cn for C(+)
n , while the poles of ρn(·|h,h′) are excluded from Cn

for C(−)
n .

In preparation of the following lemma we finally introduce the short-hand notations

dm(+)
n (λ) = a0(λ|h)dm(+)

n (λ) , dm(−)
n (λ) = an(λ|h′)dm(−)

n
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XXZ, spin-zero operators

Calculating the form factors – multiple integral representation

Lemma (following BG09)

For all ξj ∈ IntC
(±)
n , j = 1, . . . ,m, the form factors F

(±)
n,m (ξ|h,h′) of spin-zero operators have

the multiple-integral representations

F
(±)
n;m

α1...αm

β1...βm
(ξ|h,h′) =

[ p

∏
j=1

∫
C

(±)
n

dm(±)
n (λj ) F +

xj
(λj )

][ m

∏
j=p+1

∫
C

(±)
n

dm(±)
n (λj ) F−xj

(λj )

]

× detm
{
−G(±)

n (λj ,ξk )
}

∏1≤j<k≤m sin(λj −λk + iγ)sin(ξk −ξj )

where
F±x (λ) =

[x−1

∏
k=1

sin(λ−ξk )

][ m

∏
k=x+1

sin(λ−ξk ± iγ)

]
p is the number of plusses in (βj )

m
j=1 and the sequence (xj )

m
j=1 is defined as

xj =

{
ε

+
j j = 1, . . . ,p

ε
−
m−j+1 j = p + 1, . . . ,m

ε
+
j being the position of the jth plus in (βj )

m
j=1, ε

−
j that of the jth minus in (αj )

m
j=1
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XXZ, spin-zero operators

Calculating the form factors – factorization

The double integrals can be factorized and reduce to a linear combination of just
two functions

Φ
(±)
n (ξ) =

∫
C

(±)
n

dm(±)
n (λ) G(±)

n (λ,ξ) =
q∓α−ρ±1

n (ξ|h,h′)
q±α−q∓α

Ψ
(±)
n (ξ1,ξ2) =−i

∫
C

(±)
n

dm(±)
n (λ)

(
q±α ctg(λ−ξ1 + iγ)

−ρ
±1
n (ξ1|h,h′)ctg(λ−ξ1)

)
G(±)

n (λ,ξ2)

The thermal form factors F
(±)
n;m

α1...αm

β1...βm
(ξ|h,h′) are compatible with the Fermionic

basis of BJMST. Within the Fermionic basis approach all form factors become

polynomials in just two functions, the function ρ
(±)
n and a function ω

(±)
n that can

be obtained as

ω
(±)
n (ξ1,ξ2|h,h′) =−tr

{
F

(±)
n;2 (ξ1,ξ2|h,h′)c∗[1,2](ζ2,∓α)b∗[1,2](ζ1,∓α−1)(1)

}
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XXZ, spin-zero operators

Calculating the form factors – factorization

Using the latter formula we obtain the representation

ω
(±)
n (ξ1,ξ2|h,h′) =

2ζ
−αΨ

(±)
n (ξ1,ξ2) + ∆ψ(ζ,−α) + 2

(
ρ
±1
n (ξ1|h,h′)−ρ

±1
n (ξ2|h,h′)

)
ψ(ζ,−α)

Here ζ = ei(ξ1−ξ2), ψ(ζ,α) = ζα(ζ2+1)
2(ζ2−1)

and ∆ is the difference operator whose

action on a function f is defined by ∆f (ζ) = f (qζ)− f (q−1ζ)

The form factors of the energy density operator

E/J = 2
(
σ
−⊗σ

+ + σ
+⊗σ

−)+ 1
2 (q + q−1)σ

z ⊗σ
z

are the simplest example of form factors that involve ω
(±)
n

For n 6= 0

lim
h′→h

lim
ξj ,ζk→0

An(h,h′)tr
{
E1,2F

(−)
n;2 (ξ1,ξ2|h,h′)

}
tr
{
E1,2F

(+)
n;2 (ζ1,ζ2|h,h′)

}
=

J2 sh2(γ)

2

(
∂

2
h′An(h,h′)

)∣∣
h′=h resh′=h ω

(+)
n (0,0|h,h′)resh′=h ω

(−)
n (0,0|h,h′)
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2(ζ2−1)

and ∆ is the difference operator whose

action on a function f is defined by ∆f (ζ) = f (qζ)− f (q−1ζ)

The form factors of the energy density operator

E/J = 2
(
σ
−⊗σ

+ + σ
+⊗σ

−)+ 1
2 (q + q−1)σ

z ⊗σ
z

are the simplest example of form factors that involve ω
(±)
n

For n 6= 0

lim
h′→h

lim
ξj ,ζk→0

An(h,h′)tr
{
E1,2F

(−)
n;2 (ξ1,ξ2|h,h′)

}
tr
{
E1,2F

(+)
n;2 (ζ1,ζ2|h,h′)

}
=

J2 sh2(γ)

2

(
∂

2
h′An(h,h′)

)∣∣
h′=h resh′=h ω

(+)
n (0,0|h,h′)resh′=h ω

(−)
n (0,0|h,h′)
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XXZ massive, low-T

Calculating the amplitudes, ∆ > 1 [BGKS 20]

Starting point for the study of the universal amplitude is Slavnov’s scalar product
formula which we use for the four ‘scalar products’ its definition:

An(h,h′) =
〈Ψ0(h)|Ψn(h′)〉〈Ψn(h′)|Ψ0(h)〉
〈Ψ0(h)|Ψ0(h)〉〈Ψn(h′)|Ψn(h′)〉 =

[
M

∏
j=1

ρn(λj |h,h′)
ρn(µj |h,h′)

]

×
detM

{
e(λj−µk )

1+a(µk |h)
− e(µk−λj )

1+1/a(µk |h)

}
detM

{
δ

j
k +

K (λj−λk )
a′(λk |h)

}
detM

{
1

sin(λj−µk )

} detM

{
e(µj−λk )

1+an(λk |h′) −
e(λk−µj )

1+1/an(λk |h′)
}

detM

{
δ

j
k +

K (µj−µk )
a′n(µk |h′)

}
detM

{
1

sin(µj−λk )

}

This has to be analysed for N→ ∞. In general Fredholm determinants are obtained.
However, for ∆ > 1 and T → 0, thanks to the no-string hypothesis,

An(h,h′) =
ϑ2

2(Σ0)

ϑ2
2

[
∏

λ,µ∈Xn	Yn

Ψ(λ−µ)

]
det`

{
Ωn(xj ,yk )

}
det`

{
Ωn(yj ,xk )

}
det2`{J}

×
(
1 +O(T ∞)

)
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XXZ massive, low-T

Explicit form factor series for T = 0, ∆ > 1, |h|< h` = 4J sh(γ)ϑ2
4(0|q)

The dynamical two-point functions (of spin-zero operators) of the XXZ chain in the antifer-
romagnetic massive regime at T = 0 have the form-factor series representation〈

XJ1,lK(t)YJ1+m,r+mK
〉

=

∑
`∈N

k=0,1

(−1)km

(`!)2

∫
C`

h

d`u
(2π)`

∫
C`

p

d`v
(2π)`

A
(2`)
XY (U,V|k)e−i∑λ∈U	V(mp(λ)−tε(λ))

with integration contours Ch = [− π

2 ,
π

2 ]− iγ
2 + iδ and Cp = [− π

2 ,
π

2 ] + iγ
2 + iδ′, where

δ,δ′ > 0 are small

Two cases worked out so far
1 X = Y = σz , two-point function of local magnetization (C. Babenko, F. Göhmann,

K. Kozlowski, J. Sirker, and J. Suzuki, Phys. Rev. Lett. 126, 210602 (2021))

→A
(2`)
zz spectral function

2 X = Y = J =−2iJ(σ−⊗σ+−σ+⊗σ−), correlation function of magnetic current
densities (with K. Kozlowski, J. Sirker, and J. Suzuki, SciPost Phys. 12, 158 (2022))

→A
(2`)
JJ spin conductivity
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XXZ massive, low-T

Dispersion relation

In the antiferromagnetic massive regime
the dispersion relation of the elementary
excitation can be expressed explicitly in
terms of theta functions

p(λ) =
π

2
+ λ− i ln

(
ϑ4(λ + iγ/2|q2)

ϑ4(λ− iγ/2|q2)

)

ε(λ) =−2J sh(γ)ϑ3ϑ4
ϑ3(λ)

ϑ4(λ)

Here p is the momentum and ε is the
dressed energy (for h = 0)

Interpretation: dispersion relation of holes

−1 0 1
−8

−6

−4

−2

0

2

4

6

8

p

ε(
p
)

∆ = 1.5
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XXZ massive, low-T

Amplitudes

The integrands in each term of our form factor series are parameterized in terms of
two sets U = {uj}`j=1 and V = {vk}`k=1 of ‘hole and particle type’ rapidity variables
of equal cardinality `. For sums and products over these variables we shall employ
the short-hand notations

∑
λ∈U	V

f (λ) = ∑
λ∈U

f (λ)− ∑
λ∈V

f (λ) , ∏
λ∈U	V

f (λ) =
∏λ∈U f (λ)

∏λ∈V f (λ)

The amplitudes factorize in a part which depends on the operators X and Y and a
universal weight

A
(2`)
XY (U,V|k) = F

(2`)
XY (U,V|k)W (2`)(U,V|k)

For short operators like σz or J the operator-dependent part is rather simple

F
(2`)
zz (U,V|k)= 4sin2

(
1
2

(
πk + ∑λ∈U	V p(λ)

))
F

(2`)
JJ (U,V|k)= 1

4

(
∑λ∈U	V ε(λ)

)2

and should be generally related to the theory of factorizing correlation functions
(H. Boos, M. Jimbo, T. Miwa, F. Smirnov and Y. Takeyama 2006-10)
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XXZ massive, low-T

Universal weight

We introduce ‘multiplicative spectral parameters’ Hj = e2ixj , Pk = e2iyk and the following
special basic hypergeometric series

Φ1(Pk ,α) = 2`Φ2`−1

(
q−2,{q2 Pk

Pm
}`m 6=k ,{ Pk

Hm
}`m

{ Pk
Pm
}`m 6=k ,{q2 Pk

Hm
}`m

;q4,q4+2α

)

Φ2(Pk ,Pj ,α) = 2`Φ2`−1

(
q6,q2 Pj

Pk
,{q6 Pj

Pm
}`m 6=k ,j ,{q4 Pj

Hm
}`m

q8 Pj
Pk
,{q4 Pj

Pm
}`m 6=k ,j ,{q6 Pj

Hm
}`m

;q4,q4+2α

)

We further define
Ψ2(Pk ,Pj ,α) = q2αr`(Pk ,Pj )Φ2(Pk ,Pj ,α)

where

r`(Pk ,Pj ) =
q2(1−q2)2 Pj

Pk

(1− Pj
Pk

)(1−q4 Pj
Pk

)

[
`

∏
m=1

m 6=j,k

1−q2 Pj
Pm

1− Pj
Pm

][
`

∏
m=1

1− Pj
Hm

1−q2 Pj
Hm

]

and introduce a ‘conjugation’ f (Hj ,Pk ,qα) = f (1/Hj ,1/Pk ,q−α)
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XXZ massive, low-T

Universal weight

The core part of our form factor densities, is a matrix M

Mi,j = δij

[
Φ1(Pj ,0)− φ(−)(yj )

φ(+)(yj )
Φ1(Pj ,0)

]
− (1−δij )

[
Ψ2(Pj ,Pi ,0)− φ(−)(yi )

φ(+)(yi )
Ψ2(Pj ,Pi ,0)

]
where

φ
(±)(λ) = e±iΣ

∏
µ∈U	V

Γq4

( 1
2 ±

λ−µ
2iγ
)
Γq4

(
1∓ λ−µ

2iγ
)
, Σ =−πk

2
− 1

2 ∑
λ∈U	V

λ

By M̂ we denote the matrix obtained from M upon replacing xj �−yj . Finally

Ξ(λ) =
Γq4

( 1
2 + λ

2iγ
)
G2

q4

(
1 + λ

2iγ
)

Γq4

(
1 + λ

2iγ
)
G2

q4

( 1
2 + λ

2iγ
)

Then the universal weight of the form factor amplitudes is

W (2`)(U,V|k) =

(
ϑ′1

2ϑ1(Σ)

)2[
∏

λ,µ∈U	V
Ξ(λ−µ)

]
det
`
{M}det

`
{M̂}det

`

(
1

sin(uj − vk )

)2
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XXZ massive, low-T

Numerical efficiency

0 0.5 1 1.5 2 2.5 3
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G
′(2

,t
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tDMRG
I
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I
1
 + I

2

I
1
 + I

2
 + I

3
Real part of 〈σz

1(t)σz
3〉− (ϑ′1/ϑ2)2

for ∆ = 1.2. Increasing number of
terms of the series taken into ac-
count

0

0.1

G
′(1

0
,t

)
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0.1

G
′(2

0
,t

)
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XXZ massive, low-T

Numerical efficiency

50 100 150 200 250Jt
-2×10

-3

0

4×10
-3

G
(1

,t
)

real part
imaginary part

100 102 104 106 108 110
Jt

-1×10
-3

0

1×10
-3

G
′(

2
,t

)

(a)

(b)

(a) 〈σz
1(t)σz

2〉 − (−1)mϑ′21 /ϑ2
2 at long

times for ∆ = 1.2.
(b) Comparison of Re〈σz

1(t)σz
3〉 −

(−1)mϑ′21 /ϑ2
2 obtained by using the

form factor expansion (symbols) with
the two-spinon asymptotics (line) for
∆ = 1.4.
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XXZ massive, low-T

Optical conductivity
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Left panel: comparison of the analytic result and the direct Fourier transformation for
` = 1 and ∆ = 3. For the latter we used

〈
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〉
, 0≤ k ≤ 399 and 0≤ tJ ≤ 50

Right panel: Reσ(2)(ω) for various ∆
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XXZ massive, low-T

Two-spinon optical conductivity

Recall the elliptic module k , the complementary module k ′ and the complete elliptic integral K

k = ϑ
2
2/ϑ

2
3 , k ′ = ϑ

2
4/ϑ

2
3 , K = πϑ

2
3/2 .

Further introduce two functions

r(ω) =
π

K
arcsn

(√
(h`/k ′)2−ω2

h`k/k ′

∣∣∣∣k) , B(z) =
1

G4
q4

( 1
2

) ∏
σ=±

Gq4

(
1 + σz

2iγ
)
Gq4

(
σz
2iγ
)

Gq4

( 3
2 + σz

2iγ
)
Gq4

( 1
2 + σz

2iγ
)

where arcsn is the inverse of the Jacobi elliptic sn function

Then the two-spinon contribution to the real part of the optical conductivity of the XXZ chain at
zero temperature and in the antiferromagnetic massive regime can be represented as

Reσ
(2)(ω) =

q
1
2 h2

` k

8k ′
B
(
r(ω)

)
∆− cos

(
r(ω)

) ϑ2
3

ϑ2
3

(
r(ω)/2

) 1√(
(h`/k ′)2−ω2

)(
ω2−h2

`

)
where ω ∈ [h`,h`/k ′]. Outside this interval it vanishes
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Summary and outlook

Summary and outlook

1 We have developed a thermal form factor approach to the dynamical
two-point correlation functions of arbitrary local operators in fundamental
integrable models of Yang-Baxter type

2 We found factorization into a universal amplitude and properly normalized
thermal form factors for spin-zero operators in the XXZ chain

3 The properly normalized form factors have properties very similar to those of
the generalized reduced density matrix: they satisfy a form of rqKZ equation
and they can be represented as multiple integrals that factorize

4 We have applied our approach to the dynamical two-point functions of the
magnetization and of the spin current for the XXZ chain in the massive
antiferromagnetic regime and in the low-T limit

5 For T → 0 we have obtained explicit expressions for the form factor
amplitudes that contain only finite determinants and no additional
summations

6 The resulting TFFSs for the two-point functions are numerically highly
efficient
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Frank Göhmann (BUW – Faculty of Sciences) dynamical cfs of local ops 9.2.2023 32 / 32



Summary and outlook

Summary and outlook

1 We have developed a thermal form factor approach to the dynamical
two-point correlation functions of arbitrary local operators in fundamental
integrable models of Yang-Baxter type

2 We found factorization into a universal amplitude and properly normalized
thermal form factors for spin-zero operators in the XXZ chain

3 The properly normalized form factors have properties very similar to those of
the generalized reduced density matrix: they satisfy a form of rqKZ equation
and they can be represented as multiple integrals that factorize

4 We have applied our approach to the dynamical two-point functions of the
magnetization and of the spin current for the XXZ chain in the massive
antiferromagnetic regime and in the low-T limit

5 For T → 0 we have obtained explicit expressions for the form factor
amplitudes that contain only finite determinants and no additional
summations

6 The resulting TFFSs for the two-point functions are numerically highly
efficient
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