Algebraic Bethe ansatz for the open XXZ spin chain with non-diagonal boundary terms via $U_{\mathfrak{q}}\mathfrak{sl}_2$ symmetry

Dmitry Chernyak LPENS

Based on arXiv:2207.12772 with A.M. Gainutdinov and H. Saleur and arXiv:2212.09696 with A.M. Gainutdinov, J.L. Jacobsen and H. Saleur

Les Diablerets, February 8, 2023

The Hamiltonian of the open XXZ spin chain $(\mathbb{C}^2)^{\otimes N}$ of length N with arbitrary boundary fields is given by

$$H_{\text{n.d.}} := \overrightarrow{h}_{l} \cdot \overrightarrow{\sigma}_{1} + \overrightarrow{h}_{r} \cdot \overrightarrow{\sigma}_{N} + \frac{1}{2} \sum_{i=1}^{N-1} \left(\sigma_{i}^{x} \sigma_{i+1}^{x} + \sigma_{i}^{y} \sigma_{i+1}^{y} + \frac{\mathfrak{q} + \mathfrak{q}^{-1}}{2} \sigma_{i}^{z} \sigma_{i+1}^{z} \right)$$

with q and $\overrightarrow{h}_{I/r}$ 7 parameters and Pauli matrices

$$\sigma^{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \sigma^{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \sigma^{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Appears in the 6-vertex model, boundary loop models, ASEP...

Known to be integrable but has many unusual features:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

Known to be integrable but has many unusual features:

< □ > < □ > < □ > < □ > < □ > < □ > = Ξ

• U(1) symmetry broken for general $\overrightarrow{h}_{l/r}$,

Known to be integrable but has many unusual features:

- U(1) symmetry broken for general $\overrightarrow{h}_{I/r}$,
- No obvious reference state (as $\left|\uparrow\right\rangle^{\otimes N}$ for usual XXZ),

< □ > < □ > < □ > < □ > < □ > < □ > = Ξ

Known to be integrable but has many unusual features:

- U(1) symmetry broken for general $\overrightarrow{h}_{I/r}$,
- No obvious reference state (as $\left|\uparrow\right\rangle^{\otimes N}$ for usual XXZ),

• No simple and direct Bethe ansatz procedure,

Known to be integrable but has many unusual features:

- U(1) symmetry broken for general $\overrightarrow{h}_{I/r}$,
- No obvious reference state (as $\left|\uparrow\right\rangle^{\otimes N}$ for usual XXZ),
- No simple and direct Bethe ansatz procedure,
- Additional "inhomogeneous" term in the Bethe ansatz equations,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

Known to be integrable but has many unusual features:

- U(1) symmetry broken for general $\overrightarrow{h}_{I/r}$,
- No obvious reference state (as $\left|\uparrow\right\rangle^{\otimes N}$ for usual XXZ),
- No simple and direct Bethe ansatz procedure,
- Additional "inhomogeneous" term in the Bethe ansatz equations,
- The Bethe ansatz equations simplify if the parameters satisfy a "quantization" condition (the Nepomechie condition).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

Known to be integrable but has many unusual features:

- U(1) symmetry broken for general $\overrightarrow{h}_{I/r}$,
- No obvious reference state (as $\left|\uparrow\right\rangle^{\otimes N}$ for usual XXZ),
- No simple and direct Bethe ansatz procedure,
- Additional "inhomogeneous" term in the Bethe ansatz equations,
- The Bethe ansatz equations simplify if the parameters satisfy a "quantization" condition (the Nepomechie condition).

We want to understand these properties using the representation theory of lattice algebras and $U_q \mathfrak{sl}_2$ quantum group.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □

Known to be integrable but has many unusual features:

- U(1) symmetry broken for general $\overrightarrow{h}_{I/r}$,
- No obvious reference state (as $\left|\uparrow\right\rangle^{\otimes N}$ for usual XXZ),
- No simple and direct Bethe ansatz procedure,
- Additional "inhomogeneous" term in the Bethe ansatz equations,
- The Bethe ansatz equations simplify if the parameters satisfy a "quantization" condition (the Nepomechie condition).

We want to understand these properties using the representation theory of **lattice algebras** and $U_{\mathfrak{g}}\mathfrak{sl}_2$ quantum group.

Main message : Non-compact spin chains contain a lot of interesting (and unexplored) physics.

Loop models and lattice algebras

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

2 $U_{\mathfrak{q}}\mathfrak{sl}_2$ -invariant realisation

3 Bethe ansatz

Loop models and lattice algebras

2 $U_{\mathfrak{q}}\mathfrak{sl}_2$ -invariant realisation

| ◆ □ ▶ ★ □ ▶ ★ □ ▶ | □ ● ○ ○ ○ ○

Let *N* be an integer. For all $1 \le i \le N - 1$ consider the diagrams

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Configurations are built by stacking these diagrams on top of each other.

Configurations are built by stacking these diagrams on top of each other.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Configurations are built by stacking these diagrams on top of each other.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Configurations are built by stacking these diagrams on top of each other.

Configurations are built by stacking these diagrams on top of each other.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Configurations are built by stacking these diagrams on top of each other.

For example, a configuration on N = 6 sites :

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Graphical rules :

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 δ : weight of a closed loop.

Graphical rules :

 δ : weight of a closed loop.

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

3

Graphical rules :

$$e_i^2 = \dots \left| \begin{array}{c} \bigcup \\ \bigcap \\ \dots \end{array} \right| \dots = \delta \dots \left| \begin{array}{c} \bigcup \\ \bigcap \\ \dots \end{array} \right| \dots = \delta e_i$$

 δ : weight of a closed loop.

The resulting algebra is called the **Temperley-Lieb** (**TL**) algebra and denoted $TL_{\delta,N}$.

Example :

(ロ)、(型)、(E)、(E)、 E) の(()

What are its irreducible representations ?

What are its irreducible representations ?

• $TL_{\delta,N}$ is finite-dimensional so there are finitely many.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What are its irreducible representations ?

• $\mathsf{TL}_{\delta,N}$ is finite-dimensional so there are finitely many.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Standard modules W_j labelled by $0 \le j \le N/2$.

What are its irreducible representations ?

- $\mathsf{TL}_{\delta,N}$ is finite-dimensional so there are finitely many.
- Standard modules W_j labelled by $0 \le j \le N/2$.
- \mathcal{W}_j have a basis of half-diagrams with 2j through lines.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

What are its irreducible representations ?

- $\mathsf{TL}_{\delta,N}$ is finite-dimensional so there are finitely many.
- Standard modules W_j labelled by $0 \le j \le N/2$.
- W_j have a basis of half-diagrams with 2j through lines.

For example, for N = 4

$$\mathcal{W}_{0} = \mathbb{C}\langle \bigcup \bigcup, \bigcup \rangle$$
$$\mathcal{W}_{1} = \mathbb{C}\langle \bigcup \downarrow \downarrow, \downarrow \bigcup \cup \downarrow, \downarrow \downarrow \bigcup \rangle$$
$$\mathcal{W}_{2} = \mathbb{C}\langle \downarrow \downarrow \downarrow \downarrow \downarrow \rangle$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $\mathsf{TL}_{\delta,N}$ acts diagrammatically on this basis. For example :

 $\mathsf{TL}_{\delta,N}$ acts diagrammatically on this basis. For example :

$$e_2 \quad \bigcup \quad = \quad \bigcup \quad = \quad \delta \bigcup \quad$$

 $\mathsf{TL}_{\delta,N}$ acts diagrammatically on this basis. For example :

$$e_{2} \cup = \bigcup = \delta \cup$$

$$e_{2} \cup = \bigcup = \delta \cup$$

 $\mathsf{TL}_{\delta,N}$ acts diagrammatically on this basis. For example :

|▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ | 圖|| の�?

To deal with boundary conditions we need to extend $TL_{\delta,N}$.

To deal with boundary conditions we need to extend $TL_{\delta,N}$.

Introduce an additional generator b_l satisfying

 $b_l^2 = b_l$, $e_1 b_l e_1 = y_l e_1$, $[b_l, e_i] = 0$ for $2 \le i \le N - 1$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

with $y_l \in \mathbb{C}$.

To deal with boundary conditions we need to extend $TL_{\delta,N}$.

Introduce an additional generator b_l satisfying

$$b_l^2 = b_l$$
, $e_1 b_l e_1 = y_l e_1$, $[b_l, e_i] = 0$ for $2 \le i \le N - 1$

with $y_l \in \mathbb{C}$. Graphically

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

To deal with boundary conditions we need to extend $TL_{\delta,N}$.

Introduce an additional generator b_l satisfying

$$b_l^2 = b_l$$
, $e_1 b_l e_1 = y_l e_1$, $[b_l, e_i] = 0$ for $2 \le i \le N - 1$

with $y_l \in \mathbb{C}$. Graphically

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00
To deal with boundary conditions we need to extend $TL_{\delta,N}$.

Introduce an additional generator b_l satisfying

$$b_l^2 = b_l \,, \qquad e_1 b_l e_1 = y_l e_1 \,, \qquad [b_l, e_i] = 0 \quad {
m for} \quad 2 \le i \le N-1$$

with $y_l \in \mathbb{C}$. Graphically

This defines the **Blob algebra** $B_{\delta, y_l, N}$.

NURADRAERAER E 199

We can further extend $B_{\delta,y_l,N}$ by adding a right generator b_r

We can further extend $B_{\delta,\gamma_l,N}$ by adding a right generator b_r

with some weight $y_r \in \mathbb{C}$, that is

 $b_r^2 = b_r$, $e_{N-1}b_r e_{N-1} = y_r e_{N-1}$, $[b_r, e_i] = 0$ for $1 \le i \le N-2$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

We also need a weight to a loop carrying both \bullet and \blacksquare .

・ロト・日本・ヨト・ヨー うへの

We also need a weight to a loop carrying both \bullet and \blacksquare . Set

with some weight $Y \in \mathbb{C}$.

We also need a weight to a loop carrying both \bullet and \blacksquare . Set

with some weight $Y \in \mathbb{C}$.

This defines the **two-boundary Temperley-Lieb algebra** $2B_{\delta, y_{l/r}, Y, N}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What are the irreducible representations of $2B_{\delta,y_{l/r},\,Y,\,N}$?

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

What are the irreducible representations of $2B_{\delta,y_{l/r},Y,N}$?

• The standard modules of $2B_{\delta, y_{l/r}, Y, N}$ are similar to $TL_{\delta, N}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What are the irreducible representations of $2B_{\delta,y_{l/r},Y,N}$?

- The standard modules of $2B_{\delta, y_{l/r}, Y, N}$ are similar to $TL_{\delta, N}$.
- We need to decorate the half diagrams by \bullet , \blacksquare and also $\bigcirc := 1 b_l$ and $\square := 1 b_r$.

What are the irreducible representations of $2B_{\delta,y_{l/r},Y,N}$?

- The standard modules of $2B_{\delta,y_{l/r},Y,N}$ are similar to $TL_{\delta,N}$.
- We need to decorate the half diagrams by \bullet , \blacksquare and also $\bigcirc := 1 b_l$ and $\square := 1 b_r$.
- There is a distinguished **vacuum module** W of dimension 2^N with no through lines.

What are the irreducible representations of $2B_{\delta,y_{l/r},Y,N}$?

- The standard modules of $2B_{\delta,y_{l/r},Y,N}$ are similar to $TL_{\delta,N}$.
- We need to decorate the half diagrams by \bullet , \blacksquare and also $\bigcirc := 1 b_l$ and $\square := 1 b_r$.
- There is a distinguished **vacuum module** W of dimension 2^N with no through lines.

For example, for N = 2

$$\mathcal{W} = \mathbb{C} \left\langle \begin{array}{c} & & \\ \bullet & \bullet \end{array} \right\rangle \quad , \quad \left\langle \bullet & \bullet \end{array} \right\rangle \quad , \quad \left\langle \bullet & \bullet \end{array} \right\rangle \quad , \quad \left\langle \bullet & \bullet \end{array} \right\rangle$$

Introduce

$$\mathbf{H} := -\mu_I b_I - \mu_r b_r - \sum_{i=1}^{N-1} e_i \in 2\mathsf{B}_{\delta, y_{I/r}, \mathbf{Y}, N}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

for some $\mu_{l/r} \in \mathbb{C}$.

Introduce

$$\mathbf{H} := -\mu_I b_I - \mu_r b_r - \sum_{i=1}^{N-1} e_i \in 2\mathsf{B}_{\delta, y_{l/r}, Y, N}$$

for some $\mu_{I/r} \in \mathbb{C}$. Then

Theorem (J. de Gier, A. Nichols '09)

For some explicit mapping of parameters $(q, \overrightarrow{h}_{l/r}) \leftrightarrow (\delta, y_{l/r}, Y, \mu_{l/r})$

$$H_{\rm n.d.} = \mathbf{H}_{\mathcal{W}}$$

Introduce

$$\mathbf{H} := -\mu_I b_I - \mu_r b_r - \sum_{i=1}^{N-1} e_i \in 2\mathsf{B}_{\delta, y_{l/r}, Y, N}$$

for some $\mu_{I/r} \in \mathbb{C}$. Then

Theorem (J. de Gier, A. Nichols '09)

For some explicit mapping of parameters $(q, \overrightarrow{h}_{l/r}) \leftrightarrow (\delta, y_{l/r}, Y, \mu_{l/r})$

$$\textit{H}_{\rm n.d.}=\textit{H}_{\mathcal{W}}$$

<u>Idea</u> : Find a different realisation of \mathcal{W} to diagonalise $H_{n.d.}$!

Loop models and lattice algebras Ug \$12-invariant realisation Bethe ansatz

Loop models and lattice algebras

(4日) (個) (主) (主) (三) の(の)

Definition

 $U_{\mathfrak{q}}\mathfrak{sl}_2$ is generated by E, F, K and K⁻¹ with relations

$$KEK^{-1} = q^{2}E$$
, $KFK^{-1} = q^{-2}F$, $[E, F] = \frac{K - K^{-1}}{q - q^{-1}}$

It is a q-deformation of the Lie algebra \mathfrak{sl}_2 : in the limit $\mathfrak{q}\to 1$ we recover the commutation relations of the \mathfrak{sl}_2 triple (E, F, H) with $\mathsf{K}^{\pm 1}=\mathfrak{q}^{\pm \mathsf{H}}.$

Definition

 $U_{\mathfrak{q}}\mathfrak{sl}_2$ is generated by E, F, K and K⁻¹ with relations

$$KEK^{-1} = q^{2}E$$
, $KFK^{-1} = q^{-2}F$, $[E, F] = \frac{K - K^{-1}}{q - q^{-1}}$

It is a q-deformation of the Lie algebra \mathfrak{sl}_2 : in the limit $\mathfrak{q} \to 1$ we recover the commutation relations of the \mathfrak{sl}_2 triple (E, F, H) with $\mathsf{K}^{\pm 1} = \mathfrak{q}^{\pm \mathsf{H}}$.

Representations

Very similar to \mathfrak{sl}_2 . For example, the spin- $\frac{1}{2}$ representation in the basis $\{|\uparrow\rangle, |\downarrow\rangle\}$ is given by

$$\begin{split} \mathsf{E}_{\mathbb{C}^2} &= \sigma^+ := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad \mathsf{F}_{\mathbb{C}^2} = \sigma^- := \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \\ \mathsf{K}_{\mathbb{C}^2}^{\pm 1} &= \mathfrak{q}^{\pm \sigma^z} = \begin{pmatrix} \mathfrak{q}^{\pm 1} & 0 \\ 0 & \mathfrak{q}^{\mp 1} \end{pmatrix}. \end{split}$$

Using the coproduct of $U_q\mathfrak{sl}_2$ it can be extended to an action on $(\mathbb{C}^2)^{\otimes N}$.

• In the XXZ spin chain the global SU(2) symmetry of XXX is broken.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

- In the XXZ spin chain the global SU(2) symmetry of XXX is broken.
- For special boundary conditions

$$H_{\rm sym.} := \frac{\mathfrak{q} - \mathfrak{q}^{-1}}{4} (\sigma_N^z - \sigma_1^z) + \frac{1}{2} \sum_{i=1}^{N-1} \left(\sigma_i^x \sigma_{i+1}^x + \sigma_i^y \sigma_{i+1}^y + \frac{\mathfrak{q} + \mathfrak{q}^{-1}}{2} \sigma_i^z \sigma_{i+1}^z \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

is invariant under its q-deformation $U_q \mathfrak{sl}_2$.

- In the XXZ spin chain the global SU(2) symmetry of XXX is broken.
- For special boundary conditions

$$H_{\text{sym.}} := \frac{\mathfrak{q} - \mathfrak{q}^{-1}}{4} (\sigma_N^z - \sigma_1^z) + \frac{1}{2} \sum_{i=1}^{N-1} \left(\sigma_i^x \sigma_{i+1}^x + \sigma_i^y \sigma_{i+1}^y + \frac{\mathfrak{q} + \mathfrak{q}^{-1}}{2} \sigma_i^z \sigma_{i+1}^z \right)$$

is invariant under its q-deformation $U_q\mathfrak{sl}_2$.

• More generally, the hamiltonian densities

$$e_{i} = -\frac{1}{2} \left(\sigma_{i}^{x} \sigma_{i+1}^{x} + \sigma_{i}^{y} \sigma_{i+1}^{y} + \frac{\mathfrak{q} + \mathfrak{q}^{-1}}{2} (\sigma_{i}^{z} \sigma_{i+1}^{z} - 1) \right) - \frac{\mathfrak{q} - \mathfrak{q}^{-1}}{4} (\sigma_{i+1}^{z} - \sigma_{i}^{z})$$

such that

$$H_{\mathrm{sym.}} = rac{\mathfrak{q} + \mathfrak{q}^{-1}}{4}(N-1) - \sum_{i=1}^{N-1} e_i$$

also commute with $U_q \mathfrak{sl}_2...$

- In the XXZ spin chain the global SU(2) symmetry of XXX is broken.
- For special boundary conditions

$$H_{\text{sym.}} := \frac{\mathfrak{q} - \mathfrak{q}^{-1}}{4} (\sigma_N^z - \sigma_1^z) + \frac{1}{2} \sum_{i=1}^{N-1} \left(\sigma_i^x \sigma_{i+1}^x + \sigma_i^y \sigma_{i+1}^y + \frac{\mathfrak{q} + \mathfrak{q}^{-1}}{2} \sigma_i^z \sigma_{i+1}^z \right)$$

is invariant under its q-deformation $U_q\mathfrak{sl}_2$.

• More generally, the hamiltonian densities

$$e_{i} = -\frac{1}{2} \left(\sigma_{i}^{x} \sigma_{i+1}^{x} + \sigma_{i}^{y} \sigma_{i+1}^{y} + \frac{\mathfrak{q} + \mathfrak{q}^{-1}}{2} (\sigma_{i}^{z} \sigma_{i+1}^{z} - 1) \right) - \frac{\mathfrak{q} - \mathfrak{q}^{-1}}{4} (\sigma_{i+1}^{z} - \sigma_{i}^{z})$$

such that

$$\mathcal{H}_{ ext{sym.}} = rac{\mathfrak{q}+\mathfrak{q}^{-1}}{4}(\mathcal{N}-1) - \sum_{i=1}^{\mathcal{N}-1} e_i$$

also commute with $U_q \mathfrak{sl}_2...$

• ... and generate a representation of $\mathsf{TL}_{\delta,N}$ with $\delta = \mathfrak{q} + \mathfrak{q}^{-1}$!

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Can we find a $U_q \mathfrak{sl}_2$ -invariant representation of $2B_{\delta,y_{l/r},Y,N}$?

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

<u>Problem</u> : the e_i already generate the full centraliser of $U_{\mathfrak{g}}\mathfrak{sl}_2$.

<u>Problem</u> : the e_i already generate the full centraliser of $U_q \mathfrak{sl}_2$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Strategy

<u>Problem</u> : the e_i already generate the full centraliser of $U_q \mathfrak{sl}_2$.

Strategy

• Take irreps $\mathcal{X}_{l/r}$ of $U_q \mathfrak{sl}_2$ and consider the bigger Hilbert space $\mathcal{X}_l \otimes (\mathbb{C}^2)^{\otimes N} \otimes \mathcal{X}_r$.

<u>Problem</u> : the e_i already generate the full centraliser of $U_q \mathfrak{sl}_2$.

Strategy

- Take irreps $\mathcal{X}_{l/r}$ of $U_q \mathfrak{sl}_2$ and consider the bigger Hilbert space $\mathcal{X}_l \otimes (\mathbb{C}^2)^{\otimes N} \otimes \mathcal{X}_r$.
- Look for some $U_q \mathfrak{sl}_2$ -invariant operators $b_{l/r}$ acting only on the two leftmost/rightmost sites and satisfying the relations of $2B_{\delta, y_{l/r}, Y, N}$.

<u>Problem</u> : the e_i already generate the full centraliser of $U_q \mathfrak{sl}_2$.

Strategy

- Take irreps $\mathcal{X}_{l/r}$ of $U_q \mathfrak{sl}_2$ and consider the bigger Hilbert space $\mathcal{X}_l \otimes (\mathbb{C}^2)^{\otimes N} \otimes \mathcal{X}_r$.
- Look for some $U_q \mathfrak{sl}_2$ -invariant operators $b_{l/r}$ acting only on the two leftmost/rightmost sites and satisfying the relations of $2B_{\delta, y_{l/r}, Y, N}$.

For $\mathcal{X}_{l/r}$ we will take infinite-dimensional **Verma modules** of $U_{\mathfrak{q}}\mathfrak{sl}_2$.

<u>Problem</u> : the e_i already generate the full centraliser of $U_q \mathfrak{sl}_2$.

Strategy

- Take irreps $\mathcal{X}_{1/r}$ of $U_q\mathfrak{sl}_2$ and consider the bigger Hilbert space $\mathcal{X}_l \otimes (\mathbb{C}^2)^{\otimes N} \otimes \mathcal{X}_r$.
- Look for some $U_q \mathfrak{sl}_2$ -invariant operators $b_{l/r}$ acting only on the two leftmost/rightmost sites and satisfying the relations of $2B_{\delta, y_{l/r}, Y, N}$.

For $\mathcal{X}_{I/r}$ we will take infinite-dimensional **Verma modules** of $U_{\mathfrak{q}}\mathfrak{sl}_2$.

Definition

Take $\alpha \in \mathbb{C}$ and set $\mathcal{V}_{\alpha} := \bigoplus_{0 \leq n} \mathbb{C} |n\rangle$. Then $U_{\mathfrak{q}}\mathfrak{sl}_2$ acts on \mathcal{V}_{α} as

$$\begin{split} \mathsf{E}_{\mathcal{V}_{\alpha}} \left| n \right\rangle &= [n]_{\mathfrak{q}} [\alpha - n]_{\mathfrak{q}} \left| n - 1 \right\rangle \,, \\ \mathsf{F}_{\mathcal{V}_{\alpha}} \left| n \right\rangle &= \left| n + 1 \right\rangle \,, \\ \mathsf{K}_{\mathcal{V}_{\alpha}}^{\pm 1} \left| n \right\rangle &= \mathfrak{q}^{\pm (\alpha - 1 - 2n)} \left| n \right\rangle \,. \end{split}$$

One can show that we have the $U_{\mathfrak{q}}\mathfrak{sl}_2$ irrep decomposition

 $\mathcal{V}_{lpha}\otimes \mathbb{C}^2 = \mathcal{V}_{lpha+1}\oplus \mathcal{V}_{lpha-1}\,.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

One can show that we have the $U_{\mathfrak{q}}\mathfrak{sl}_2$ irrep decomposition

$$\mathcal{V}_{lpha}\otimes\mathbb{C}^2=\mathcal{V}_{lpha+1}\oplus\mathcal{V}_{lpha-1}$$
 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Consider the Hilbert space $\mathcal{V}_{\alpha_l} \otimes (\mathbb{C}^2)^{\otimes N} \otimes \mathcal{V}_{\alpha_r}$.

One can show that we have the $U_{\mathfrak{q}}\mathfrak{sl}_2$ irrep decomposition

$$\mathcal{V}_{\alpha}\otimes\mathbb{C}^2=\mathcal{V}_{lpha+1}\oplus\mathcal{V}_{lpha-1}$$
 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Consider the Hilbert space $\mathcal{V}_{\alpha_l} \otimes (\mathbb{C}^2)^{\otimes N} \otimes \mathcal{V}_{\alpha_r}$.
- Take b_l the projector on \mathcal{V}_{α_l+1} acting on $\mathcal{V}_{\alpha_l}\otimes\mathbb{C}^2$

One can show that we have the $U_{\mathfrak{q}}\mathfrak{sl}_2$ irrep decomposition

$$\mathcal{V}_{\alpha}\otimes\mathbb{C}^2=\mathcal{V}_{\alpha+1}\oplus\mathcal{V}_{\alpha-1}$$
 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Consider the Hilbert space $\mathcal{V}_{\alpha_l} \otimes (\mathbb{C}^2)^{\otimes N} \otimes \mathcal{V}_{\alpha_r}$.
- Take b_l the projector on \mathcal{V}_{α_l+1} acting on $\mathcal{V}_{\alpha_l}\otimes\mathbb{C}^2$
- Take b_r the projector on \mathcal{V}_{α_r+1} acting on $\mathbb{C}^2 \otimes \mathcal{V}_{\alpha_r}$.

One can show that we have the $U_{\mathfrak{q}}\mathfrak{sl}_2$ irrep decomposition

$$\mathcal{V}_{\alpha}\otimes\mathbb{C}^2=\mathcal{V}_{\alpha+1}\oplus\mathcal{V}_{\alpha-1}$$
 .

- Consider the Hilbert space $\mathcal{V}_{\alpha_l} \otimes (\mathbb{C}^2)^{\otimes N} \otimes \mathcal{V}_{\alpha_r}$.
- Take b_l the projector on \mathcal{V}_{α_l+1} acting on $\mathcal{V}_{\alpha_l}\otimes\mathbb{C}^2$
- Take b_r the projector on \mathcal{V}_{α_r+1} acting on $\mathbb{C}^2 \otimes \mathcal{V}_{\alpha_r}$.

Then

$$b_l^2 = b_l$$
, $e_1 b_l e_1 = y_l e_1$, $[b_l, e_i] = 0$ for $2 \le i \le N - 1$

$$b_r^2 = b_r$$
, $e_{N-1}b_r e_{N-1} = y_r e_{N-1}$, $[b_r, e_i] = 0$ for $1 \le i \le N-2$
with

$$y_{l/r} = \frac{[\alpha_{l/r} + 1]_{\mathfrak{q}}}{[\alpha_{l/r}]_{\mathfrak{q}}}$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

What about the weight Y ?

What about the weight Y ?

It turns out Y is not a number but a central element of $U_q \mathfrak{sl}_2$!

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

What about the weight Y ?

It turns out Y is not a number but a central element of $U_{\mathfrak{q}}\mathfrak{sl}_2$!

 $U_{\mathfrak{q}}\mathfrak{sl}_2$ admits a central Casimir element

$$\mathsf{C} \mathrel{\mathop:}= (\mathfrak{q} - \mathfrak{q}^{-1})^2 \mathsf{FE} + \mathfrak{q} \mathsf{K} + \mathfrak{q}^{-1} \mathsf{K}^{-1}$$
 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ
What about the weight Y ?

It turns out Y is not a number but a central element of $U_{\mathfrak{q}}\mathfrak{sl}_2$!

 $U_{\mathfrak{q}}\mathfrak{sl}_2$ admits a central Casimir element

$$\mathsf{C} \mathrel{\mathop:}= (\mathfrak{q} - \mathfrak{q}^{-1})^2\mathsf{F}\mathsf{E} + \mathfrak{q}\mathsf{K} + \mathfrak{q}^{-1}\mathsf{K}^{-1}$$
 .

 Evaluated on our spin chain V_{α_l} ⊗ (C²)^{⊗N} ⊗ V_{α_r} it commutes with the U_qsl₂ action and also the e_i, b_l and b_r. What about the weight Y ?

It turns out Y is not a number but a central element of $U_{\mathfrak{q}}\mathfrak{sl}_2$!

 $U_{\mathfrak{q}}\mathfrak{sl}_2$ admits a central Casimir element

$$\mathsf{C} \mathrel{\mathop:}= (\mathfrak{q} - \mathfrak{q}^{-1})^2 \mathsf{FE} + \mathfrak{q} \mathsf{K} + \mathfrak{q}^{-1} \mathsf{K}^{-1}$$
 .

- Evaluated on our spin chain V_{α_l} ⊗ (C²)^{⊗N} ⊗ V_{α_r} it commutes with the U_qsl₂ action and also the e_i, b_l and b_r.
- With

$$Y = \frac{\mathfrak{q}^{\alpha_l + \alpha_r + 1} + \mathfrak{q}^{-\alpha_l - \alpha_r - 1} - \mathsf{C}}{(\mathfrak{q}^{\alpha_l} - \mathfrak{q}^{-\alpha_l})(\mathfrak{q}^{\alpha_r} - \mathfrak{q}^{-\alpha_r})}$$

 e_i , b_l and b_r define a representation of the (universal) two-boundary Temperley-Lieb algebra.

(ロ)、(型)、(E)、(E)、 E) の(()

What values can Y take ?

What values can Y take ?

The Casimir C is constant on any irrep of $U_q \mathfrak{sl}_2$.

What values can Y take ?

The Casimir C is constant on any irrep of $U_q\mathfrak{sl}_2$. We just need to compute the decomposition of $\mathcal{V}_{\alpha_l} \otimes (\mathbb{C}^2)^{\otimes N} \otimes \mathcal{V}_{\alpha_r}$ into $U_q\mathfrak{sl}_2$ -irreps !

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

What values can Y take ?

The Casimir C is constant on any irrep of $U_q\mathfrak{sl}_2$. We just need to compute the decomposition of $\mathcal{V}_{\alpha_l} \otimes (\mathbb{C}^2)^{\otimes N} \otimes \mathcal{V}_{\alpha_r}$ into $U_q\mathfrak{sl}_2$ -irreps !

Using the fusion rules

$$\mathcal{V}_{lpha}\otimes\mathcal{V}_{eta}=igoplus_{n\geq 0}\mathcal{V}_{lpha+eta-1-2n}\qquad ext{and}\qquad \mathcal{V}_{lpha}\otimes\mathbb{C}^2=\mathcal{V}_{lpha+1}\oplus\mathcal{V}_{lpha-1}$$

What values can Y take ?

The Casimir C is constant on any irrep of $U_{\mathfrak{q}}\mathfrak{sl}_2$. We just need to compute the decomposition of $\mathcal{V}_{\alpha_l} \otimes (\mathbb{C}^2)^{\otimes N} \otimes \mathcal{V}_{\alpha_r}$ into $U_{\mathfrak{q}}\mathfrak{sl}_2$ -irreps !

Using the fusion rules

$$\mathcal{V}_{lpha}\otimes\mathcal{V}_{eta}=igoplus_{n\geq 0}\mathcal{V}_{lpha+eta-1-2n}\qquad ext{and}\qquad \mathcal{V}_{lpha}\otimes\mathbb{C}^2=\mathcal{V}_{lpha+1}\oplus\mathcal{V}_{lpha-1}$$

we obtain

$$\mathcal{V}_{\alpha_l}\otimes (\mathbb{C}^2)^{\otimes N}\otimes \mathcal{V}_{\alpha_r}= \bigoplus_{M\geq 0}\mathcal{V}_{\alpha_l+\alpha_r-1+N-2M}\otimes \mathcal{Z}_M$$

where the \mathcal{Z}_M are some multiplicity spaces of dimension

$$d_M := \dim \mathcal{Z}_M = egin{cases} \sum_{k=0}^M inom{N}{k} & ext{ for } 0 \leq M \leq N \ 2^N & ext{ for } M \geq N \end{cases}$$

Since
$$C_{\mathcal{V}_{\alpha}} = \mathfrak{q}^{\alpha} + \mathfrak{q}^{-\alpha}$$
,
 $Y_{\mathcal{Z}_{M}} = \frac{\left[M + 1 - \frac{N}{2}\right]_{\mathfrak{q}} \left[\alpha_{l} + \alpha_{r} - M + \frac{N}{2}\right]_{\mathfrak{q}}}{[\alpha_{l}]_{\mathfrak{q}}[\alpha_{r}]_{\mathfrak{q}}} := Y_{M}$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Since
$$C_{\mathcal{V}_{\alpha}} = \mathfrak{q}^{\alpha} + \mathfrak{q}^{-\alpha}$$
,

$$Y_{\mathcal{Z}_{M}} = \frac{\left[M + 1 - \frac{N}{2}\right]_{\mathfrak{q}} \left[\alpha_{l} + \alpha_{r} - M + \frac{N}{2}\right]_{\mathfrak{q}}}{[\alpha_{l}]_{\mathfrak{q}}[\alpha_{r}]_{\mathfrak{q}}} := Y_{M}.$$

Therefore \mathcal{Z}_M is a representation of $2B_{\delta, y_{l/r}, Y_M, N}$ for all $M \ge 0$!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Since
$$C_{\mathcal{V}_{\alpha}} = \mathfrak{q}^{\alpha} + \mathfrak{q}^{-\alpha}$$
,
 $Y_{\mathcal{Z}_{M}} = \frac{\left[M + 1 - \frac{N}{2}\right]_{\mathfrak{q}} \left[\alpha_{I} + \alpha_{r} - M + \frac{N}{2}\right]_{\mathfrak{q}}}{\left[\alpha_{I}\right]_{\mathfrak{q}} \left[\alpha_{r}\right]_{\mathfrak{q}}} := Y_{M}$.

Therefore \mathcal{Z}_M is a representation of $2B_{\delta, y_{l/r}, Y_M, N}$ for all $M \ge 0$!

More precisely

Theorem (D.C., J.L. Jacobsen, A.M. Gainutdinov, H. Saleur '22)

Denote \mathcal{W}_M the 2^N dimensional vacuum module of $2B_{\delta, y_{l/r}, Y_M, N}$.

Since
$$C_{\mathcal{V}_{\alpha}} = \mathfrak{q}^{\alpha} + \mathfrak{q}^{-\alpha}$$
,
 $Y_{\mathcal{Z}_{M}} = \frac{\left[M + 1 - \frac{N}{2}\right]_{\mathfrak{q}} \left[\alpha_{l} + \alpha_{r} - M + \frac{N}{2}\right]_{\mathfrak{q}}}{\left[\alpha_{l}\right]_{\mathfrak{q}} \left[\alpha_{r}\right]_{\mathfrak{q}}} := Y_{M}$.

Therefore \mathcal{Z}_M is a representation of $2B_{\delta, y_{l/r}, Y_M, N}$ for all $M \ge 0$!

More precisely

Theorem (D.C., J.L. Jacobsen, A.M. Gainutdinov, H. Saleur '22)

Denote \mathcal{W}_M the 2^N dimensional vacuum module of $2B_{\delta, y_{l/r}, Y_M, N}$. Then

i) For $0 \le M \le N - 1$, \mathcal{Z}_M is isomorphic to an irreducible d_M -dimensional sub-block of \mathcal{W}_M ,

Since
$$C_{\mathcal{V}_{\alpha}} = \mathfrak{q}^{\alpha} + \mathfrak{q}^{-\alpha}$$
,
 $Y_{\mathcal{Z}_{M}} = \frac{\left[M + 1 - \frac{N}{2}\right]_{\mathfrak{q}} \left[\alpha_{l} + \alpha_{r} - M + \frac{N}{2}\right]_{\mathfrak{q}}}{[\alpha_{l}]_{\mathfrak{q}} [\alpha_{r}]_{\mathfrak{q}}} := Y_{M}$.

Therefore \mathcal{Z}_M is a representation of $2B_{\delta, y_{l/r}, Y_M, N}$ for all $M \ge 0$!

More precisely

Theorem (D.C., J.L. Jacobsen, A.M. Gainutdinov, H. Saleur '22)

Denote \mathcal{W}_M the 2^N dimensional vacuum module of $2B_{\delta, y_{l/r}, Y_M, N}$. Then

- i) For $0 \le M \le N 1$, \mathcal{Z}_M is isomorphic to an irreducible d_M -dimensional sub-block of \mathcal{W}_M ,
- ii) For $M \ge N$, $\mathcal{Z}_M \cong \mathcal{W}_M$ and is irreducible.

Define

$$H_{2b} := -\mu_I b_I - \mu_r b_r - \sum_{i=1}^{N-1} e_i$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

acting on $\mathcal{V}_{\alpha_{l}} \otimes (\mathbb{C}^{2})^{\otimes N} \otimes \mathcal{V}_{\alpha_{r}}$ and denote $H_{\mathrm{n.d.}}^{(M)} := H_{\mathrm{n.d.}}(Y = Y_{M}).$

Define

$$\mathcal{H}_{2b} := -\mu_l b_l - \mu_r b_r - \sum_{i=1}^{N-1} e_i$$

acting on $\mathcal{V}_{\alpha_{I}} \otimes (\mathbb{C}^{2})^{\otimes N} \otimes \mathcal{V}_{\alpha_{r}}$ and denote $H_{n.d.}^{(M)} := H_{n.d.}(Y = Y_{M})$. Then i) For $0 \leq M \leq N - 1$, $H_{2b}|_{\mathcal{Z}_{M}}$ is equal to a d_{M} -dimensional sub-block of $\mathbf{H}_{\mathcal{W}_{M}} = H_{n.d.}^{(M)}$,

Define

$$\mathcal{H}_{2b} := -\mu_l b_l - \mu_r b_r - \sum_{i=1}^{N-1} e_i$$

acting on V_{αl} ⊗ (C²)^{⊗N} ⊗ V_{αr} and denote H^(M)_{n.d.} := H_{n.d.}(Y = Y_M). Then
i) For 0 ≤ M ≤ N − 1, H_{2b}|_{Z_M} is equal to a d_M-dimensional sub-block of H_{W_M} = H^(M)_{n.d.},
ii) For M ≥ N, H_{2b}|_{Z_M} = H_{W_M} = H^(M)_{n.d.}.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Define

$$\mathcal{H}_{2b} := -\mu_l b_l - \mu_r b_r - \sum_{i=1}^{N-1} e_i$$

acting on V_{αl} ⊗ (C²)^{⊗N} ⊗ V_{αr} and denote H^(M)_{n.d.} := H_{n.d.}(Y = Y_M). Then
i) For 0 ≤ M ≤ N − 1, H_{2b}|_{Z_M} is equal to a d_M-dimensional sub-block of H_{W_M} = H^(M)_{n.d.},
ii) For M ≥ N, H_{2b}|_{Z_M} = H_{W_M} = H^(M)_{n.d.}.

Consequences

• Diagonalising $H_{n.d.}^{(M)}$ for all $M \ge N$ is equivalent to diagonalising H_{2b} .

Define

$$\mathcal{H}_{2b} := -\mu_l b_l - \mu_r b_r - \sum_{i=1}^{N-1} e_i$$

acting on $\mathcal{V}_{\alpha_{l}} \otimes (\mathbb{C}^{2})^{\otimes N} \otimes \mathcal{V}_{\alpha_{r}}$ and denote $H_{n.d.}^{(M)} := H_{n.d.}(Y = Y_{M})$. Then *i*) For $0 \leq M \leq N - 1$, $H_{2b}|_{\mathcal{Z}_{M}}$ is equal to a d_{M} -dimensional sub-block of $\mathbf{H}_{\mathcal{W}_{M}} = H_{n.d.}^{(M)}$.

ii) For
$$M \geq N$$
, $H_{2b}|_{\mathcal{Z}_M} = \mathbf{H}_{\mathcal{W}_M} = H_{\mathrm{n.d.}}^{(M)}$.

Consequences

- Diagonalising $H_{n.d.}^{(M)}$ for all $M \ge N$ is equivalent to diagonalising H_{2b} .
- We can arbitrarily fix the parameters δ , $y_{l/r}$ and $\mu_{l/r}$ but $Y \in \{Y_M, M \ge 0\}$, and is fixed by the sector \mathcal{Z}_M of H_{2b} .

Define

$$\mathcal{H}_{2b} := -\mu_l b_l - \mu_r b_r - \sum_{i=1}^{N-1} e_i$$

acting on $\mathcal{V}_{\alpha_{l}} \otimes (\mathbb{C}^{2})^{\otimes N} \otimes \mathcal{V}_{\alpha_{r}}$ and denote $H_{n.d.}^{(M)} := H_{n.d.}(Y = Y_{M})$. Then *i*) For $0 \leq M \leq N - 1$, $H_{2b}|_{\mathcal{Z}_{M}}$ is equal to a d_{M} -dimensional sub-block of $\mathbf{H}_{\mathcal{W}_{M}} = H_{n.d.}^{(M)}$.

ii) For
$$M \geq N$$
, $H_{2b}|_{\mathcal{Z}_M} = \mathbf{H}_{\mathcal{W}_M} = H_{\mathrm{n.d.}}^{(M)}$.

Consequences

- Diagonalising $H_{n.d.}^{(M)}$ for all $M \ge N$ is equivalent to diagonalising H_{2b} .
- We can arbitrarily fix the parameters δ , $y_{l/r}$ and $\mu_{l/r}$ but $Y \in \{Y_M, M \ge 0\}$, and is fixed by the sector \mathcal{Z}_M of H_{2b} .
- The "quantization condition" on Y is precisely the Nepomechie condition.

Define

$$\mathcal{H}_{2b} := -\mu_l b_l - \mu_r b_r - \sum_{i=1}^{N-1} e_i$$

acting on $\mathcal{V}_{\alpha_{l}} \otimes (\mathbb{C}^{2})^{\otimes N} \otimes \mathcal{V}_{\alpha_{r}}$ and denote $H_{n.d.}^{(M)} := H_{n.d.}(Y = Y_{M})$. Then *i*) For $0 \leq M \leq N - 1$, $H_{2b}|_{\mathcal{Z}_{M}}$ is equal to a d_{M} -dimensional sub-block of $\mathbf{H}_{\mathcal{W}_{M}} = H_{n.d.}^{(M)}$.

ii) For
$$M \geq N$$
, $H_{2b}|_{\mathcal{Z}_M} = \mathbf{H}_{\mathcal{W}_M} = H_{\mathrm{n.d.}}^{(M)}$.

Consequences

- Diagonalising $H_{n.d.}^{(M)}$ for all $M \ge N$ is equivalent to diagonalising H_{2b} .
- We can arbitrarily fix the parameters δ , $y_{l/r}$ and $\mu_{l/r}$ but $Y \in \{Y_M, M \ge 0\}$, and is fixed by the sector \mathcal{Z}_M of H_{2b} .
- The "quantization condition" on Y is precisely the Nepomechie condition.
- We have shown that it originates from $U_{\mathfrak{q}}\mathfrak{sl}_2$ -fusion rules.

Loop models and lattice algebras

2 $U_{\mathfrak{q}}\mathfrak{sl}_2$ -invariant realisation

(4日) (個) (主) (主) (三) の(の)

To implement boundary Algebraic Bethe Ansatz we need :

(ロ)、(型)、(E)、(E)、 E) の(()

To implement boundary Algebraic Bethe Ansatz we need :

• A solution of the Yang-Baxter equation R(u) (a.k.a *R*-matrix),

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

To implement boundary Algebraic Bethe Ansatz we need :

- A solution of the Yang-Baxter equation R(u) (a.k.a *R*-matrix),
- A solution of the boundary Yang-Baxter equation *K*(*u*) (a.k.a *K*-matrix),

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

To implement boundary Algebraic Bethe Ansatz we need :

- A solution of the Yang-Baxter equation R(u) (a.k.a *R*-matrix),
- A solution of the boundary Yang-Baxter equation K(u) (a.k.a *K*-matrix),

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• A reference state.

To implement boundary Algebraic Bethe Ansatz we need :

- A solution of the Yang-Baxter equation R(u) (a.k.a *R*-matrix),
- A solution of the boundary Yang-Baxter equation *K*(*u*) (a.k.a *K*-matrix),
- A reference state.

All these ingredients are available for H_{2b} thanks to the $U_q \mathfrak{sl}_2$ symmetry !

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

To implement boundary Algebraic Bethe Ansatz we need :

- A solution of the Yang-Baxter equation R(u) (a.k.a *R*-matrix),
- A solution of the boundary Yang-Baxter equation *K*(*u*) (a.k.a *K*-matrix),
- A reference state.

All these ingredients are available for H_{2b} thanks to the $U_q \mathfrak{sl}_2$ symmetry !

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• R(u) is constructed from the *R*-matrix of $U_q\mathfrak{sl}_2$.

To implement boundary Algebraic Bethe Ansatz we need :

- A solution of the Yang-Baxter equation R(u) (a.k.a *R*-matrix),
- A solution of the boundary Yang-Baxter equation *K*(*u*) (a.k.a *K*-matrix),
- A reference state.

All these ingredients are available for H_{2b} thanks to the $U_q \mathfrak{sl}_2$ symmetry !

- R(u) is constructed from the *R*-matrix of $U_q \mathfrak{sl}_2$.
- No need for a *K*-matrix: just use the affine *R*-matrix in Verma representation !

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

To implement boundary Algebraic Bethe Ansatz we need :

- A solution of the Yang-Baxter equation R(u) (a.k.a *R*-matrix),
- A solution of the boundary Yang-Baxter equation *K*(*u*) (a.k.a *K*-matrix),
- A reference state.

All these ingredients are available for H_{2b} thanks to the $U_q \mathfrak{sl}_2$ symmetry !

- R(u) is constructed from the *R*-matrix of $U_q \mathfrak{sl}_2$.
- No need for a *K*-matrix: just use the affine *R*-matrix in Verma representation !

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• The reference state is just the highest-weight vector $|\!\!\uparrow\rangle := |0\rangle \otimes |\!\!\uparrow\rangle^{\otimes N} \otimes |0\rangle.$

 $U_{\mathfrak{q}}\mathfrak{sl}_2$ admits a universal *R*-matrix

$$\mathsf{R} = \mathfrak{q}^{\frac{\mathsf{H} \otimes \mathsf{H}}{2}} \sum_{k \ge 0} \frac{(\mathfrak{q} - \mathfrak{q}^{-1})^{2k}}{\prod_{n=1}^{k} (\mathfrak{q}^n - \mathfrak{q}^{-n})} \mathfrak{q}^{k(k-1)/2} \mathsf{E}^k \otimes \mathsf{F}^k \,.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

 $U_{\mathfrak{q}}\mathfrak{sl}_2$ admits a universal *R*-matrix

$$\mathsf{R} = \mathfrak{q}^{\frac{\mathsf{H} \otimes \mathsf{H}}{2}} \sum_{k \ge 0} \frac{(\mathfrak{q} - \mathfrak{q}^{-1})^{2k}}{\prod_{n=1}^{k} (\mathfrak{q}^n - \mathfrak{q}^{-n})} \mathfrak{q}^{k(k-1)/2} \mathsf{E}^k \otimes \mathsf{F}^k \,.$$

For two representations ${\mathcal X}$ and ${\mathcal Y},$ the operators

$$\begin{array}{ll} P_{\mathcal{X},\mathcal{Y}} \circ \mathsf{R}_{\mathcal{X},\mathcal{Y}} : \ \mathcal{X} \otimes \mathcal{Y} & \to \mathcal{Y} \otimes \mathcal{X} \,, \\ \mathsf{R}_{\mathcal{Y},\mathcal{X}}^{-1} \circ P_{\mathcal{X},\mathcal{Y}} : \ \mathcal{X} \otimes \mathcal{Y} & \to \mathcal{Y} \otimes \mathcal{X} \end{array}$$

where

$$P_{\mathcal{X},\mathcal{Y}} : \ \mathcal{X} \otimes \mathcal{Y} \to \mathcal{Y} \otimes \mathcal{X}$$
$$x \otimes y \mapsto y \otimes x$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

are $U_q \mathfrak{sl}_2$ -intertwiners.

Introduce, for any representation \mathcal{X} of $U_{\mathfrak{q}}\mathfrak{sl}_2$,

$$\begin{split} & R_{\mathcal{X},\mathbb{C}^2}(u) := e^u \mathsf{R}_{\mathcal{X},\mathbb{C}^2} - e^{-u} P_{\mathbb{C}^2,\mathcal{X}} \circ \mathsf{R}_{\mathbb{C}^2,\mathcal{X}}^{-1} \circ P_{\mathcal{X},\mathbb{C}^2}, \\ & R_{\mathbb{C}^2,\mathcal{X}}(u) := e^u \mathsf{R}_{\mathbb{C}^2,\mathcal{X}} - e^{-u} P_{\mathcal{X},\mathbb{C}^2} \circ \mathsf{R}_{\mathcal{X},\mathbb{C}^2}^{-1} \circ P_{\mathbb{C}^2,\mathcal{X}}. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduce, for any representation \mathcal{X} of $U_{\mathfrak{q}}\mathfrak{sl}_2$,

$$\begin{aligned} R_{\mathcal{X},\mathbb{C}^2}(u) &:= e^u \mathsf{R}_{\mathcal{X},\mathbb{C}^2} - e^{-u} \mathsf{P}_{\mathbb{C}^2,\mathcal{X}} \circ \mathsf{R}_{\mathbb{C}^2,\mathcal{X}}^{-1} \circ \mathsf{P}_{\mathcal{X},\mathbb{C}^2}, \\ R_{\mathbb{C}^2,\mathcal{X}}(u) &:= e^u \mathsf{R}_{\mathbb{C}^2,\mathcal{X}} - e^{-u} \mathsf{P}_{\mathcal{X},\mathbb{C}^2} \circ \mathsf{R}_{\mathcal{X},\mathbb{C}^2}^{-1} \circ \mathsf{P}_{\mathbb{C}^2,\mathcal{X}}. \end{aligned}$$

Then for any three representations $\mathcal{X}_{1,2,3}$ of $U_q\mathfrak{sl}_2$ with at least two of them isomorphic to \mathbb{C}^2 the Yang-Baxter equation

$$R_{\chi_{1},\chi_{2}}(u-v)R_{\chi_{1},\chi_{3}}(u)R_{\chi_{2},\chi_{3}}(v) = R_{\chi_{2},\chi_{3}}(v)R_{\chi_{1},\chi_{3}}(u)R_{\chi_{1},\chi_{2}}(u-v)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

is satisfied.

Introduce, for any representation \mathcal{X} of $U_{\mathfrak{q}}\mathfrak{sl}_2$,

$$\begin{aligned} R_{\mathcal{X},\mathbb{C}^2}(u) &:= e^u \mathsf{R}_{\mathcal{X},\mathbb{C}^2} - e^{-u} P_{\mathbb{C}^2,\mathcal{X}} \circ \mathsf{R}_{\mathbb{C}^2,\mathcal{X}}^{-1} \circ P_{\mathcal{X},\mathbb{C}^2}, \\ R_{\mathbb{C}^2,\mathcal{X}}(u) &:= e^u \mathsf{R}_{\mathbb{C}^2,\mathcal{X}} - e^{-u} P_{\mathcal{X},\mathbb{C}^2} \circ \mathsf{R}_{\mathcal{X},\mathbb{C}^2}^{-1} \circ P_{\mathbb{C}^2,\mathcal{X}}. \end{aligned}$$

Then for any three representations $\mathcal{X}_{1,2,3}$ of $U_q\mathfrak{sl}_2$ with at least two of them isomorphic to \mathbb{C}^2 the Yang-Baxter equation

$$R_{\chi_{1},\chi_{2}}(u-v)R_{\chi_{1},\chi_{3}}(u)R_{\chi_{2},\chi_{3}}(v) = R_{\chi_{2},\chi_{3}}(v)R_{\chi_{1},\chi_{3}}(u)R_{\chi_{1},\chi_{2}}(u-v)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

is satisfied.

This sufficient to build the monodromy and transfer matrix !

Define the monodromy

$$\mathcal{T}(u) := T(u)\hat{T}(u) = \begin{pmatrix} \mathcal{A}(u) & \mathcal{B}(u) \\ \mathcal{C}(u) & \mathcal{D}(u) \end{pmatrix},$$
$$T(u) := R_{0,\mathcal{V}_{\alpha_r}}(u-\zeta_r)R_{0,\mathcal{N}}(u)\dots R_{0,1}(u)R_{0,\mathcal{V}_{\alpha_l}}(u-\zeta_l),$$
$$\hat{T}(u) := R_{\mathcal{V}_{\alpha_r},0}(u+\zeta_l)R_{1,0}(u)\dots R_{\mathcal{N},0}(u)R_{\mathcal{V}_{\alpha_r},0}(u+\zeta_r).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Define the monodromy

$$\mathcal{T}(u) := T(u)\hat{T}(u) = \begin{pmatrix} \mathcal{A}(u) & \mathcal{B}(u) \\ \mathcal{C}(u) & \mathcal{D}(u) \end{pmatrix},$$
$$T(u) := R_{0,\mathcal{V}_{\alpha_r}}(u-\zeta_r)R_{0,N}(u)\dots R_{0,1}(u)R_{0,\mathcal{V}_{\alpha_l}}(u-\zeta_l),$$
$$\hat{T}(u) := R_{\mathcal{V}_{\alpha_l},0}(u+\zeta_l)R_{1,0}(u)\dots R_{N,0}(u)R_{\mathcal{V}_{\alpha_r},0}(u+\zeta_r)$$

and the transfer matrix

$$t(u) := \operatorname{qtr}_0 \mathcal{T}(u) = \mathfrak{q} \mathcal{A}(u) + \mathfrak{q}^{-1} \mathcal{D}(u).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Define the monodromy

$$\mathcal{T}(u) := T(u)\hat{T}(u) = \begin{pmatrix} \mathcal{A}(u) & \mathcal{B}(u) \\ \mathcal{C}(u) & \mathcal{D}(u) \end{pmatrix},$$
$$T(u) := R_{0,\mathcal{V}_{\alpha_{r}}}(u-\zeta_{r})R_{0,N}(u)\dots R_{0,1}(u)R_{0,\mathcal{V}_{\alpha_{l}}}(u-\zeta_{l}),$$
$$\hat{T}(u) := R_{\mathcal{V}_{\alpha_{l}},0}(u+\zeta_{l})R_{1,0}(u)\dots R_{N,0}(u)R_{\mathcal{V}_{\alpha_{r}},0}(u+\zeta_{r})$$

and the transfer matrix

$$t(u) := \operatorname{qtr}_0 \mathcal{T}(u) = \mathfrak{q} \mathcal{A}(u) + \mathfrak{q}^{-1} \mathcal{D}(u).$$

By construction t(u) is $U_{\mathfrak{q}}\mathfrak{sl}_2$ -invariant and

$$H_{2b} = c_1 + c_2 \frac{\mathrm{d}}{\mathrm{d}u} \bigg|_{u=\hbar/2} t(u)$$

with $q = e^{\hbar}$, c_1, c_2 some explicit constants and $\mu_{I/r}$ related to $\zeta_{I/r}$.
Set

$$|\psi\rangle = \mathcal{B}(\mathbf{v}_1) \dots \mathcal{B}(\mathbf{v}_M) |\Uparrow\rangle$$

and compute $t(u) |\psi\rangle$ using

(ロ)、(型)、(E)、(E)、 E) の(()

Set

$$|\psi
angle = \mathcal{B}(\mathbf{v}_1) \dots \mathcal{B}(\mathbf{v}_M) |\Uparrow
angle$$

and compute $t(u) |\psi\rangle$ using

• The commutators $[\mathcal{A}(u), \mathcal{B}(v)]$ and $[\mathcal{D}(u), \mathcal{B}(v)]$ given by the YBE,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Set

$$|\psi\rangle = \mathcal{B}(\mathbf{v}_1) \dots \mathcal{B}(\mathbf{v}_M) |\Uparrow
angle$$

and compute $t(u) |\psi\rangle$ using

• The commutators $[\mathcal{A}(u), \mathcal{B}(v)]$ and $[\mathcal{D}(u), \mathcal{B}(v)]$ given by the YBE,

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

• The explicit eigenvalues of $\mathcal{A}(u)$ and $\mathcal{D}(u)$ when acting on $|\Uparrow\rangle$.

Set

$$|\psi
angle = \mathcal{B}(\mathbf{v}_1) \dots \mathcal{B}(\mathbf{v}_M) |\Uparrow
angle$$

and compute $t(u) \ket{\psi}$ using

- The commutators $[\mathcal{A}(u), \mathcal{B}(v)]$ and $[\mathcal{D}(u), \mathcal{B}(v)]$ given by the YBE,
- The explicit eigenvalues of $\mathcal{A}(u)$ and $\mathcal{D}(u)$ when acting on $|\Uparrow\rangle$.

Then $|\psi\rangle$ is an eigenvector of H_{2b} with eigenvalue

$$E(\{v_m\}) = \sum_{m=1}^{M} \frac{\sinh^2(\hbar)}{\sinh(v_m - \hbar/2)\sinh(v_m + \hbar/2)}$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

$$|\psi\rangle = \mathcal{B}(\mathbf{v}_1) \dots \mathcal{B}(\mathbf{v}_M) |\Uparrow\rangle$$

and compute $t(u) \ket{\psi}$ using

- The commutators $[\mathcal{A}(u), \mathcal{B}(v)]$ and $[\mathcal{D}(u), \mathcal{B}(v)]$ given by the YBE,
- The explicit eigenvalues of $\mathcal{A}(u)$ and $\mathcal{D}(u)$ when acting on $|\Uparrow\rangle$.

Then $|\psi
angle$ is an eigenvector of H_{2b} with eigenvalue

$$E(\lbrace v_m \rbrace) = \sum_{m=1}^{M} \frac{\sinh^2(\hbar)}{\sinh(v_m - \hbar/2)\sinh(v_m + \hbar/2)}$$

iff the rapidities $\{v_m\}_{1 \le m \le M}$ satisfy the **Bethe ansatz equations (BAE)**

$$\frac{\Delta_l(v_m)\Delta_r(v_m)}{\Delta_l(-v_m)\Delta_r(-v_m)}\left(\frac{\sinh(v_m+\hbar/2)}{\sinh(v_m-\hbar/2)}\right)^{2N} = \prod_{\substack{k=1\\k\neq m}}^M \frac{\sinh(v_m-v_k+\hbar)\sinh(v_m+v_k+\hbar)}{\sinh(v_m-v_k-\hbar)\sinh(v_m+v_k-\hbar)}$$

$$\Delta_{I/r}(u) := 1 - \mu_{I/r} \frac{\sinh\left(u - \hbar/2\right) \sinh\left(u + \hbar(\alpha_{I/r} - 1/2)\right)}{\sinh(\hbar) \sinh\left(\hbar\alpha_{I/r}\right)}$$
$$\propto \sinh\left(u + \hbar\frac{\alpha_{I/r} - 1}{2} - \zeta_{I/r}\right) \sinh\left(u + \hbar\frac{\alpha_{I/r} - 1}{2} + \zeta_{I/r}\right) \cdot \sum_{n \to \infty} \sum_{l \to \infty} \sum_{l$$

Remarks

• These are precisely the "simpler" Bethe ansatz equations under the Nepomechie constraint.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Remarks

• These are precisely the "simpler" Bethe ansatz equations under the Nepomechie constraint.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• The magnon number $M \ge 0$ can be arbitrarily large.

• These are precisely the "simpler" Bethe ansatz equations under the Nepomechie constraint.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- The magnon number $M \ge 0$ can be arbitrarily large.
- We expect that the BAE provide an eigenbasis of $H_{2b}|_{\mathcal{Z}_M}$.

- These are precisely the "simpler" Bethe ansatz equations under the Nepomechie constraint.
- The magnon number $M \ge 0$ can be arbitrarily large.
- We expect that the BAE provide an eigenbasis of $H_{2b}|_{\mathcal{Z}_M}$.

What about $H_{\rm n.d.}$?

- These are precisely the "simpler" Bethe ansatz equations under the Nepomechie constraint.
- The magnon number $M \ge 0$ can be arbitrarily large.
- We expect that the BAE provide an eigenbasis of $H_{2b}|_{\mathcal{Z}_M}$.

What about $H_{n.d.}$?

• If $M \ge N$, $H_{\mathrm{n.d.}}^{(M)} = H_{2b}|_{\mathcal{Z}_M}$ so the BAE are the same.

- These are precisely the "simpler" Bethe ansatz equations under the Nepomechie constraint.
- The magnon number $M \ge 0$ can be arbitrarily large.
- We expect that the BAE provide an eigenbasis of $H_{2b}|_{\mathcal{Z}_M}$.

What about $H_{n.d.}$?

- If $M \ge N$, $H_{n.d.}^{(M)} = H_{2b}|_{\mathcal{Z}_M}$ so the BAE are the same.
- If $0 \le M \le N 1$ $H_{2b}|_{\mathcal{Z}_M}$ is only a subblock of $H_{n.d.}^{(M)}$...

- These are precisely the "simpler" Bethe ansatz equations under the Nepomechie constraint.
- The magnon number $M \ge 0$ can be arbitrarily large.
- We expect that the BAE provide an eigenbasis of $H_{2b}|_{\mathcal{Z}_M}$.

What about $H_{\rm n.d.}$?

- If $M \ge N$, $H_{n.d.}^{(M)} = H_{2b}|_{\mathcal{Z}_M}$ so the BAE are the same.
- If $0 \le M \le N 1$ $H_{2b}|_{\mathcal{Z}_M}$ is only a subblock of $H_{n.d.}^{(M)}$...
- ...but one can reach the other block using the representation theory of the two-boundary TL algebra.

- These are precisely the "simpler" Bethe ansatz equations under the Nepomechie constraint.
- The magnon number $M \ge 0$ can be arbitrarily large.
- We expect that the BAE provide an eigenbasis of $H_{2b}|_{\mathcal{Z}_M}$.

What about $H_{\rm n.d.}$?

- If $M \ge N$, $H_{\mathrm{n.d.}}^{(M)} = H_{2b}|_{\mathcal{Z}_M}$ so the BAE are the same.
- If $0 \le M \le N 1$ $H_{2b}|_{\mathcal{Z}_M}$ is only a subblock of $H_{n.d.}^{(M)}$...
- ...but one can reach the other block using the representation theory of the two-boundary TL algebra.
- One needs to transform $\alpha_{l/r}, \mu_{l/r} \rightarrow -\alpha_{l/r}, -\mu_{l/r}$ and $M \rightarrow N M 1$ in the BAE.

- These are precisely the "simpler" Bethe ansatz equations under the Nepomechie constraint.
- The magnon number $M \ge 0$ can be arbitrarily large.
- We expect that the BAE provide an eigenbasis of $H_{2b}|_{\mathcal{Z}_M}$.

What about $H_{n.d.}$?

- If $M \ge N$, $H_{n.d.}^{(M)} = H_{2b}|_{\mathcal{Z}_M}$ so the BAE are the same.
- If $0 \le M \le N 1$ $H_{2b}|_{\mathcal{Z}_M}$ is only a subblock of $H_{n.d.}^{(M)}$...
- ...but one can reach the other block using the representation theory of the two-boundary TL algebra.
- One needs to transform $\alpha_{l/r}, \mu_{l/r} \rightarrow -\alpha_{l/r}, -\mu_{l/r}$ and $M \rightarrow N M 1$ in the BAE.
- We can even reach "negative" values of *M*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Scaling limit : one-boundary case

Scaling limit : one-boundary case

For q = e^{iπ/p}, p ∈]1, +∞[the model is critical and we expect its scaling limit to be described by a CFT.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Scaling limit : one-boundary case

- For q = e^{iπ/p}, p ∈]1, +∞[the model is critical and we expect its scaling limit to be described by a CFT.
- Using the BAE and a distribution-based method we can compute the 1/N corrections to the energy levels.

Scaling limit : one-boundary case

- For q = e^{iπ/p}, p ∈]1, +∞[the model is critical and we expect its scaling limit to be described by a CFT.
- Using the BAE and a distribution-based method we can compute the 1/N corrections to the energy levels.

Denote E_j the ground state of $H_b|_{\mathcal{H}_{N/2-j}}$.

Scaling limit : one-boundary case

- For q = e^{iπ/p}, p ∈]1, +∞[the model is critical and we expect its scaling limit to be described by a CFT.
- Using the BAE and a distribution-based method we can compute the 1/N corrections to the energy levels.

Denote E_j the ground state of $H_b|_{\mathcal{H}_{N/2-j}}$. Then

$$E_j = Ne_{\mathrm{b}} + E_{\mathrm{s}} + rac{\pi v_{\mathrm{F}}}{N} \left(-rac{c}{24} + h_{lpha,lpha+2j}
ight) + o(1/N^2),$$

where

- $e_{\rm b}$ is the bulk energy per site,
- $E_{\rm s}$ is the surface energy,
- $v_{\rm F} = p \sin \frac{\pi}{p}$ is the Fermi velocity,
- $c = 1 \frac{6}{p(p-1)}$ is the central charge,

•
$$h_{r,s} = \frac{(pr-(p-1)s)^2-1}{4p(p-1)}$$
 are conformal weights.

By the Cardy formula these corrections provide the CFT spectrum in the continuum

$$\lim_{N\to\infty}\operatorname{tr}_{\mathcal{H}_{N/2-j}}q^{\frac{N}{\pi\nu_F}(H_b-Ne_b-E_s)}=\frac{q^{-\frac{c}{24}+h_{\alpha,\alpha+2j}}}{\prod_{n=1}^{+\infty}(1-q^n)}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

By the Cardy formula these corrections provide the CFT spectrum in the continuum

$$\lim_{N\to\infty}\operatorname{tr}_{\mathcal{H}_{N/2-j}}q^{\frac{N}{\pi v_F}(H_b-Ne_b-E_s)}=\frac{q^{-\frac{c}{24}+h_{\alpha,\alpha+2j}}}{\prod_{n=1}^{+\infty}(1-q^n)}\,.$$

Application

wher

Loop model partition function on a cylinder of parameter au = M/N :

р

$$Z_{\tau}(\delta, y) = \sum_{j \in \mathbb{Z}} \frac{\sin \frac{\pi(\alpha+1)}{p}}{\sin \frac{\pi\alpha}{p}} \frac{q^{-\frac{c}{24} + h_{\alpha, \alpha+2j}}}{\prod_{n=1}^{+\infty} (1 - q^n)}$$

e $q = e^{-\tau}$, $\delta = 2\cos \frac{\pi}{p}$ and $y = \frac{\sin \frac{\pi(\alpha+1)}{p}}{\sin \frac{\pi\alpha}{2}}$.

By the Cardy formula these corrections provide the CFT spectrum in the continuum

$$\lim_{N\to\infty}\operatorname{tr}_{\mathcal{H}_{N/2-j}}q^{\frac{N}{\pi v_F}(H_b-Ne_b-E_s)}=\frac{q^{-\frac{c}{24}+h_{\alpha,\alpha+2j}}}{\prod_{n=1}^{+\infty}(1-q^n)}\,.$$

Application

Loop model partition function on a cylinder of parameter au = M/N :

$$Z_{\tau}(\delta, y) = \sum_{j \in \mathbb{Z}} \frac{\sin \frac{\pi(\alpha+1)}{p}}{\sin \frac{\pi\alpha}{p}} \frac{q^{-\frac{c}{24} + h_{\alpha, \alpha+2j}}}{\prod_{n=1}^{+\infty} (1-q^n)}$$

where $q = e^{-\tau}$, $\delta = 2 \cos \frac{\pi}{p}$ and $y = \frac{\sin \frac{\pi(\alpha+1)}{p}}{\sin \frac{\pi\alpha}{p}}$.

• Does not depend on the coupling constant μ .

By the Cardy formula these corrections provide the CFT spectrum in the continuum

$$\lim_{N\to\infty}\operatorname{tr}_{\mathcal{H}_{N/2-j}}q^{\frac{N}{\pi v_F}(H_b-Ne_b-E_s)}=\frac{q^{-\frac{c}{24}+h_{\alpha,\alpha+2j}}}{\prod_{n=1}^{+\infty}(1-q^n)}\,.$$

Application

Loop model partition function on a cylinder of parameter au = M/N :

$$Z_{\tau}(\delta, y) = \sum_{j \in \mathbb{Z}} \frac{\sin \frac{\pi(\alpha+1)}{p}}{\sin \frac{\pi\alpha}{p}} \frac{q^{-\frac{c}{24} + h_{\alpha, \alpha+2j}}}{\prod_{n=1}^{+\infty} (1-q^n)}$$

where $q = e^{-\tau}$, $\delta = 2 \cos \frac{\pi}{p}$ and $y = \frac{\sin \frac{\pi(\alpha+1)}{p}}{\sin \frac{\pi\alpha}{p}}$.

- Does not depend on the coupling constant μ .
- Related to spanning forests and (η, ξ) ghost CFT for p = 2.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Scaling limit : two-boundary case

Scaling limit : two-boundary case

Coulomb gas/loop model prediction:

$$\lim_{N\to\infty} \operatorname{tr} q^{\frac{N}{\pi v_F}(H_{\mathrm{n.d.}}^{(M)} - Ne_b - E_s)} = \sum_{j\in\mathbb{Z}} \frac{q^{-\frac{c}{24} + h_{\alpha_M,\alpha_M} + 2j}}{\prod_{n=1}^{+\infty}(1-q^n)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

with $\alpha_M := \alpha_I + \alpha_r + N/2 - 1 - 2M$.

Scaling limit : two-boundary case

Coulomb gas/loop model prediction:

$$\lim_{N \to \infty} \operatorname{tr} q^{\frac{N}{\pi v_F}(H_{\mathrm{n.d.}}^{(M)} - Ne_b - E_s)} = \sum_{j \in \mathbb{Z}} \frac{q^{-\frac{c}{24} + h_{\alpha_M, \alpha_M} + 2j}}{\prod_{n=1}^{+\infty} (1 - q^n)}$$

with $\alpha_M := \alpha_I + \alpha_r + N/2 - 1 - 2M$.

• We can recover part of this spectrum using the same methods.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Scaling limit : two-boundary case

Coulomb gas/loop model prediction:

$$\lim_{N \to \infty} \operatorname{tr} q^{\frac{N}{\pi v_F}(H_{\mathrm{n.d.}}^{(M)} - Ne_b - E_s)} = \sum_{i \in \mathbb{Z}} \frac{q^{-\frac{c}{24} + h_{\alpha_M, \alpha_M} + 2j}}{\prod_{n=1}^{+\infty} (1 - q^n)}$$

with $\alpha_M := \alpha_I + \alpha_r + N/2 - 1 - 2M$.

• We can recover part of this spectrum using the same methods.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Unclear how to recover the rest.

Scaling limit : two-boundary case

Coulomb gas/loop model prediction:

$$\lim_{N \to \infty} \operatorname{tr} q^{\frac{N}{\pi v_F}(\mathcal{H}_{\mathrm{n.d.}}^{(M)} - Ne_b - E_s)} = \sum_{i \in \mathbb{Z}} \frac{q^{-\frac{c}{24} + h_{\alpha_M, \alpha_M} + 2j}}{\prod_{n=1}^{+\infty} (1 - q^n)}$$

with $\alpha_M := \alpha_I + \alpha_r + N/2 - 1 - 2M$.

• We can recover part of this spectrum using the same methods.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Unclear how to recover the rest.
- Additional symmetry in the continuum ?

Summary

• We started with the XXZ Hamiltonian $H_{n.d.}$ with arbitrary boundary fields $\overrightarrow{h}_{1/r}$.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Summary

- We started with the XXZ Hamiltonian $H_{n.d.}$ with arbitrary boundary fields $\overrightarrow{h}_{1/r}$.
- We reinterpreted it as an abstract element **H** of the two-boundary TL algebra evaluated in the 2^N-dimensional vacuum module \mathcal{W} of $2B_{\delta,y_{l/r},Y,N}$.

< □ > < □ > < □ > < □ > < □ > < □ > = Ξ

Summary

- We started with the XXZ Hamiltonian $H_{n.d.}$ with arbitrary boundary fields $\overrightarrow{h}_{1/r}$.
- We reinterpreted it as an abstract element **H** of the two-boundary TL algebra evaluated in the 2^N -dimensional vacuum module \mathcal{W} of $2B_{\delta,y_{1/r},Y,N}$.
- We constructed a $U_{\mathfrak{q}}\mathfrak{sl}_2$ -invariant Hamiltonian H_{2b} whose sectors \mathcal{Z}_M are the vacuum modules \mathcal{W}_M of $2B_{\delta, y_{l/r}, Y_M, N}$.

Summary

- We started with the XXZ Hamiltonian $H_{n.d.}$ with arbitrary boundary fields $\overrightarrow{h}_{1/r}$.
- We reinterpreted it as an abstract element **H** of the two-boundary TL algebra evaluated in the 2^N -dimensional vacuum module \mathcal{W} of $2B_{\delta,y_{I/r},Y,N}$.
- We constructed a $U_{\mathfrak{q}}\mathfrak{sl}_2$ -invariant Hamiltonian H_{2b} whose sectors \mathcal{Z}_M are the vacuum modules \mathcal{W}_M of $2B_{\delta, y_{l/r}, Y_M, N}$.
- We diagonalised $H_{2b}|_{\mathcal{Z}_M}$ and thus $H_{n.d.}$ by algebraic Bethe ansatz for arbitrary values of the parameters δ , $y_{l/r}$, $\mu_{l/r}$ and $Y = Y_M$.

Summary

- We started with the XXZ Hamiltonian $H_{n.d.}$ with arbitrary boundary fields $\overrightarrow{h}_{1/r}$.
- We reinterpreted it as an abstract element **H** of the two-boundary TL algebra evaluated in the 2^N -dimensional vacuum module \mathcal{W} of $2B_{\delta,y_{I/r},Y,N}$.
- We constructed a $U_q \mathfrak{sl}_2$ -invariant Hamiltonian H_{2b} whose sectors \mathcal{Z}_M are the vacuum modules \mathcal{W}_M of $2B_{\delta, y_{l/r}, Y_M, N}$.
- We diagonalised $H_{2b}|_{\mathcal{Z}_M}$ and thus $H_{n.d.}$ by algebraic Bethe ansatz for arbitrary values of the parameters δ , $y_{l/r}$, $\mu_{l/r}$ and $Y = Y_M$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

• We saw that the Nepomechie condition $Y \in \{Y_M, M \ge 0\}$ originates from $U_q \mathfrak{sl}_2$ fusion rules.

Summary

- We started with the XXZ Hamiltonian $H_{n.d.}$ with arbitrary boundary fields $\overrightarrow{h}_{1/r}$.
- We reinterpreted it as an abstract element **H** of the two-boundary TL algebra evaluated in the 2^N -dimensional vacuum module \mathcal{W} of $2B_{\delta,y_{I/r},Y,N}$.
- We constructed a $U_{\mathfrak{q}}\mathfrak{sl}_2$ -invariant Hamiltonian H_{2b} whose sectors \mathcal{Z}_M are the vacuum modules \mathcal{W}_M of $2B_{\delta, y_{l/r}, Y_M, N}$.
- We diagonalised $H_{2b}|_{\mathcal{Z}_M}$ and thus $H_{n.d.}$ by algebraic Bethe ansatz for arbitrary values of the parameters δ , $y_{l/r}$, $\mu_{l/r}$ and $Y = Y_M$.
- We saw that the Nepomechie condition $Y \in \{Y_M, M \ge 0\}$ originates from $U_q \mathfrak{sl}_2$ fusion rules.

Open questions

• A spin chain covering all values of Y.

イロケ ス合 ケメヨケ スヨケード

Summary

- We started with the XXZ Hamiltonian $H_{n.d.}$ with arbitrary boundary fields $\overrightarrow{h}_{1/r}$.
- We reinterpreted it as an abstract element **H** of the two-boundary TL algebra evaluated in the 2^N -dimensional vacuum module \mathcal{W} of $2B_{\delta,y_{I/r},Y,N}$.
- We constructed a $U_q \mathfrak{sl}_2$ -invariant Hamiltonian H_{2b} whose sectors \mathcal{Z}_M are the vacuum modules \mathcal{W}_M of $2B_{\delta, y_{l/r}, Y_M, N}$.
- We diagonalised $H_{2b}|_{\mathcal{Z}_M}$ and thus $H_{n.d.}$ by algebraic Bethe ansatz for arbitrary values of the parameters δ , $y_{l/r}$, $\mu_{l/r}$ and $Y = Y_M$.
- We saw that the Nepomechie condition $Y \in \{Y_M, M \ge 0\}$ originates from $U_q \mathfrak{sl}_2$ fusion rules.

Open questions

- A spin chain covering all values of Y.
- CFT scaling limit at criticality and relation to Virasoro fusion.

Summary

- We started with the XXZ Hamiltonian $H_{n.d.}$ with arbitrary boundary fields $\overrightarrow{h}_{1/r}$.
- We reinterpreted it as an abstract element **H** of the two-boundary TL algebra evaluated in the 2^N -dimensional vacuum module \mathcal{W} of $2B_{\delta,y_{I/r},Y,N}$.
- We constructed a $U_{\mathfrak{q}}\mathfrak{sl}_2$ -invariant Hamiltonian H_{2b} whose sectors \mathcal{Z}_M are the vacuum modules \mathcal{W}_M of $2B_{\delta, y_{l/r}, Y_M, N}$.
- We diagonalised $H_{2b}|_{\mathcal{Z}_M}$ and thus $H_{n.d.}$ by algebraic Bethe ansatz for arbitrary values of the parameters δ , $y_{l/r}$, $\mu_{l/r}$ and $Y = Y_M$.
- We saw that the Nepomechie condition Y ∈ {Y_M, M ≥ 0} originates from U_qsl₂ fusion rules.

Open questions

- A spin chain covering all values of Y.
- CFT scaling limit at criticality and relation to Virasoro fusion.
- QFT interpretation ?
Conclusion

Summary

- We started with the XXZ Hamiltonian $H_{n.d.}$ with arbitrary boundary fields $\overrightarrow{h}_{1/r}$.
- We reinterpreted it as an abstract element **H** of the two-boundary TL algebra evaluated in the 2^N -dimensional vacuum module \mathcal{W} of $2B_{\delta,y_{I/r},Y,N}$.
- We constructed a $U_{\mathfrak{q}}\mathfrak{sl}_2$ -invariant Hamiltonian H_{2b} whose sectors \mathcal{Z}_M are the vacuum modules \mathcal{W}_M of $2B_{\delta,y_{l/r},Y_M,N}$.
- We diagonalised $H_{2b}|_{\mathcal{Z}_M}$ and thus $H_{n.d.}$ by algebraic Bethe ansatz for arbitrary values of the parameters δ , $y_{l/r}$, $\mu_{l/r}$ and $Y = Y_M$.
- We saw that the Nepomechie condition $Y \in \{Y_M, M \ge 0\}$ originates from $U_q \mathfrak{sl}_2$ fusion rules.

Open questions

- A spin chain covering all values of Y.
- CFT scaling limit at criticality and relation to Virasoro fusion.
- QFT interpretation ?
- Relation to loop models, 2D random geometry, ASEP...

Loop models and lattice algebras $U_q \mathfrak{sl}_2$ -invariant realisation Bethe ansatz

Backstage : "Dual" BAE

$$\frac{\overline{\Delta}_{l}(v_{m})\overline{\Delta}_{r}(v_{m})}{\overline{\Delta}_{l}(-v_{m})\overline{\Delta}_{r}(-v_{m})}\left(\frac{\sinh(v_{m}+\hbar/2)}{\sinh(v_{m}-\hbar/2)}\right)^{2N} = \prod_{\substack{k=1\\k\neq m}}^{\overline{M}} \frac{\sinh(v_{m}-v_{k}+\hbar)\sinh(v_{m}+v_{k})}{\sinh(v_{m}-v_{k}-\hbar)\sinh(v_{m}+v_{k})}$$

with $\overline{M} = N - M - 1$ and

$$\begin{split} \bar{\Delta}_{I/r}(u) &=: 1 - \mu_{I/r} \frac{\sinh\left(u - \hbar/2\right) \sinh\left(u - \hbar(\alpha_{I/r} + 1/2)\right)}{\sinh(\hbar) \sinh\left(\hbar\alpha_{I/r}\right)} \\ &= \frac{\sinh\left(u - \hbar\frac{\alpha_{I/r} + 1}{2} - \zeta_{I/r}\right) \sinh\left(u - \hbar\frac{\alpha_{I/r} + 1}{2} + \zeta_{I/r}\right)}{\sinh\left(\frac{\hbar\alpha_{I/r}}{2} - \zeta_{I/r}\right) \sinh\left(\frac{\hbar\alpha_{I/r}}{2} + \zeta_{I/r}\right)} \,. \end{split}$$

They come from the isomorphism

$$2\mathsf{B}_{\delta,y_{l/r},Y_M,N} \cong 2\mathsf{B}_{\delta,\delta-y_{l/r},\delta-y_l-y_r+Y_{\overline{M}},N}, \qquad b_{l/r} \to 1-b_{l/r}.$$

Backstage : Explicit expressions of $b_{l/r}$

We have

$$b_{l} = \frac{1}{[\alpha_{l}]_{\mathfrak{q}}} \begin{pmatrix} \frac{\mathfrak{q}^{\alpha_{l}} - \mathfrak{q}^{-1} \mathsf{K}^{-1}}{\mathfrak{q} - \mathfrak{q}^{-1}} & \mathsf{F} \\ \mathfrak{q} \mathsf{K}^{-1} \mathsf{E} & \frac{\mathfrak{q} \mathsf{K}^{-1} - \mathfrak{q}^{-\alpha_{l}}}{\mathfrak{q} - \mathfrak{q}^{-1}} \end{pmatrix}, \ b_{r} = \frac{1}{[\alpha_{r}]_{\mathfrak{q}}} \begin{pmatrix} \frac{\mathfrak{q} \mathsf{K} - \mathfrak{q}^{-\alpha_{r}}}{\mathfrak{q} - \mathfrak{q}^{-1}} & \mathfrak{q} \mathsf{K} \mathsf{F} \\ \mathsf{E} & \frac{\mathfrak{q}^{\alpha_{r}} - \mathfrak{q}^{-1} \mathsf{K}}{\mathfrak{q} - \mathfrak{q}^{-1}} \end{pmatrix}$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

written as 2 × 2 matrices with elements in $\operatorname{End}(\mathcal{V}_{\alpha_{I/r}})$.

 $b_{l/r}$ is the projector on the $\mathcal{V}_{\alpha_{l/r}+1}$ factor of $\mathcal{V}_{\alpha_l} \otimes \mathbb{C}^2$ or $\mathbb{C}^2 \otimes \mathcal{V}_{\alpha_r}$.