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Motivation

The Hamiltonian of the open XXZ spin chain (C2)⊗N of length N with
arbitrary boundary fields is given by

Hn.d. :=
−→
h l ·−→σ 1+

−→
h r ·−→σ N +

1

2

N−1∑
i=1

(
σx
i σ

x
i+1 + σy

i σ
y
i+1 +

q + q−1

2
σz
i σ

z
i+1

)

with q and
−→
h l/r 7 parameters and Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

Appears in the 6-vertex model, boundary loop models, ASEP...



Motivation

Known to be integrable but has many unusual features:

• U(1) symmetry broken for general
−→
h l/r ,

• No obvious reference state (as |↑〉⊗N for usual XXZ),

• No simple and direct Bethe ansatz procedure,

• Additional ”inhomogeneous” term in the Bethe ansatz equations,

• The Bethe ansatz equations simplify if the parameters satisfy a
”quantization” condition (the Nepomechie condition).

We want to understand these properties using the representation theory
of lattice algebras and Uqsl2 quantum group.

Main message : Non-compact spin chains contain a lot of
interesting (and unexplored) physics.
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Let N be an integer. For all 1 ≤ i ≤ N − 1 consider the diagrams

ei =

.

.

.

.
...

. .

. .
...

.

.

.

.

i i + 1

and

1 =

.

.

.

.

.

.

.

.
...
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Bethe ansatz

Configurations are built by stacking these diagrams on top of each other.

For example, a configuration on N = 6 sites :

e5e2 =

.

. . .

. . .

. . .

. .

e5e1 =

.
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. . .

. . .

. .

e4e2 =

.

. . .

. . .
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. .
= e4e2e5e1e5e2
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Graphical rules :

e2i =
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δ : weight of a closed loop.
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The resulting algebra is called the Temperley-Lieb (TL) algebra and
denoted TLδ,N .
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Example :
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What are its irreducible representations ?

• TLδ,N is finite-dimensional so there are finitely many.

• Standard modules Wj labelled by 0 ≤ j ≤ N/2.

• Wj have a basis of half-diagrams with 2j through lines.

For example, for N = 4

W0 = C〈. . . . , . .. . 〉

W1 = C〈. . .. .. , .. ... . , .... . .〉

W2 = C〈.. .. .. ..〉
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TLδ,N acts diagrammatically on this basis. For example :
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To deal with boundary conditions we need to extend TLδ,N .

Introduce an additional generator bl satisfying

b2l = bl , e1ble1 = yle1 , [bl , ei ] = 0 for 2 ≤ i ≤ N − 1

with yl ∈ C. Graphically

bl =

.

.
•

.

.
...

.

.

.

.

.

.
•• =

.

.
•

. .

. .. .

. .

• = yl

. .

. .

This defines the Blob algebra Bδ,yl ,N .
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We can further extend Bδ,yl ,N by adding a right generator br

br =

.

.
�

.

.
...

.

.

.

.

satisfying

.

.
�
� =

.

.
�

. .

. .. .

. .

� = yr

. .

. .

with some weight yr ∈ C, that is

b2r = br , eN−1breN−1 = yreN−1 , [br , ei ] = 0 for 1 ≤ i ≤ N−2 .
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We also need a weight to a loop carrying both • and �.

Set

. .

. .. .

. .

• � = Y

. .

. .

with some weight Y ∈ C.

This defines the two-boundary Temperley-Lieb algebra 2Bδ,yl/r ,Y ,N .
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What are the irreducible representations of 2Bδ,yl/r ,Y ,N ?

• The standard modules of 2Bδ,yl/r ,Y ,N are similar to TLδ,N .

• We need to decorate the half diagrams by •, � and also
◦ := 1− bl and � := 1− br .

• There is a distinguished vacuum module W of dimension 2N with
no through lines.

For example, for N = 2

W = C〈
. .
• �

,
. .
◦ �

,
. .
• �

,
. .
◦ � 〉
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Introduce

H := −µlbl − µrbr −
N−1∑
i=1

ei ∈ 2Bδ,yl/r ,Y ,N

for some µl/r ∈ C.

Then

Theorem (J. de Gier, A. Nichols ’09)

For some explicit mapping of parameters (q,
−→
h l/r )↔ (δ, yl/r ,Y , µl/r )

Hn.d. = HW

Idea : Find a different realisation of W to diagonalise Hn.d. !
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Definition

Uqsl2 is generated by E, F, K and K−1 with relations

KEK−1 = q2E , KFK−1 = q−2F , [E,F] =
K− K−1

q− q−1
.

It is a q-deformation of the Lie algebra sl2 : in the limit q→ 1 we recover
the commutation relations of the sl2 triple (E,F,H) with K±1 = q±H.

Representations

Very similar to sl2. For example, the spin- 12 representation in the basis
{|↑〉 , |↓〉} is given by

EC2 = σ+ :=

(
0 1
0 0

)
, FC2 = σ− :=

(
0 0
1 0

)
,

K±1C2 = q±σ
z

=

(
q±1 0

0 q∓1

)
.

Using the coproduct of Uqsl2 it can be extended to an action on (C2)⊗N .
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• In the XXZ spin chain the global SU(2) symmetry of XXX is broken.

• For special boundary conditions

Hsym. :=
q− q−1

4
(σz

N−σz
1)+

1

2

N−1∑
i=1

(
σx
i σ

x
i+1 + σy

i σ
y
i+1 +

q + q−1

2
σz
i σ

z
i+1

)

is invariant under its q-deformation Uqsl2.

• More generally, the hamiltonian densities

ei = −1

2

(
σx
i σ

x
i+1 + σy

i σ
y
i+1 +

q + q−1

2
(σz

i σ
z
i+1 − 1)

)
−q− q−1

4
(σz

i+1−σz
i )

such that

Hsym. =
q + q−1

4
(N − 1)−

N−1∑
i=1

ei

also commute with Uqsl2...

• ... and generate a representation of TLδ,N with δ = q + q−1 !
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Uqsl2-invariant realisation

Bethe ansatz

Can we find a Uqsl2-invariant representation of 2Bδ,yl/r ,Y ,N ?

Problem : the ei already generate the full centraliser of Uqsl2.

Strategy

• Take irreps Xl/r of Uqsl2 and consider the bigger Hilbert space

Xl ⊗ (C2)⊗N ⊗Xr .

• Look for some Uqsl2-invariant operators bl/r acting only on the two
leftmost/rightmost sites and satisfying the relations of 2Bδ,yl/r ,Y ,N .

For Xl/r we will take infinite-dimensional Verma modules of Uqsl2.

Definition

Take α ∈ C and set Vα :=
⊕

0≤n C |n〉. Then Uqsl2 acts on Vα as

EVα |n〉 = [n]q[α− n]q |n − 1〉 ,

FVα |n〉 = |n + 1〉 , [x ]q :=
qx − q−x

q− q−1

K±1Vα |n〉 = q±(α−1−2n) |n〉 .
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Bethe ansatz

One can show that we have the Uqsl2 irrep decomposition

Vα ⊗ C2 = Vα+1 ⊕ Vα−1 .

• Consider the Hilbert space Vαl
⊗ (C2)⊗N ⊗ Vαr .

• Take bl the projector on Vαl+1 acting on Vαl
⊗ C2

• Take br the projector on Vαr+1 acting on C2 ⊗ Vαr .

Then

b2l = bl , e1ble1 = yle1 , [bl , ei ] = 0 for 2 ≤ i ≤ N − 1

b2r = br , eN−1breN−1 = yreN−1 , [br , ei ] = 0 for 1 ≤ i ≤ N − 2

with

yl/r =
[αl/r + 1]q

[αl/r ]q
.
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Uqsl2-invariant realisation

Bethe ansatz

What about the weight Y ?

It turns out Y is not a number but a central element of Uqsl2 !

Uqsl2 admits a central Casimir element

C := (q− q−1)2FE + qK + q−1K−1 .

• Evaluated on our spin chain Vαl
⊗ (C2)⊗N ⊗ Vαr it commutes with

the Uqsl2 action and also the ei , bl and br .

• With

Y =
qαl+αr+1 + q−αl−αr−1 − C

(qαl − q−αl )(qαr − q−αr )

ei , bl and br define a representation of the (universal) two-boundary
Temperley-Lieb algebra.
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Uqsl2-invariant realisation

Bethe ansatz

What values can Y take ?

The Casimir C is constant on any irrep of Uqsl2. We just need to
compute the decomposition of Vαl

⊗ (C2)⊗N ⊗ Vαr into Uqsl2-irreps !

Using the fusion rules

Vα ⊗ Vβ =
⊕
n≥0

Vα+β−1−2n and Vα ⊗ C2 = Vα+1 ⊕ Vα−1

we obtain

Vαl
⊗ (C2)⊗N ⊗ Vαr =

⊕
M≥0

Vαl+αr−1+N−2M ⊗ZM

where the ZM are some multiplicity spaces of dimension

dM := dimZM =


M∑
k=0

(
N

k

)
for 0 ≤ M ≤ N

2N for M ≥ N
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Bethe ansatz

Since CVα = qα + q−α,

YZM
=

[
M + 1− N

2

]
q

[
αl + αr −M + N

2

]
q

[αl ]q[αr ]q
:= YM .

Therefore ZM is a representation of 2Bδ,yl/r ,YM ,N for all M ≥ 0 !

More precisely

Theorem (D.C., J.L. Jacobsen, A.M. Gainutdinov, H. Saleur ’22)

Denote WM the 2N dimensional vacuum module of 2Bδ,yl/r ,YM ,N . Then

i) For 0 ≤ M ≤ N − 1, ZM is isomorphic to an irreducible
dM -dimensional sub-block of WM ,

ii) For M ≥ N, ZM
∼=WM and is irreducible.
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Corollary

Define

H2b := −µlbl − µrbr −
N−1∑
i=1

ei

acting on Vαl
⊗ (C2)⊗N ⊗Vαr and denote H

(M)
n.d. := Hn.d.(Y = YM).

Then

i) For 0 ≤ M ≤ N − 1, H2b|ZM
is equal to a dM -dimensional sub-block

of HWM
= H

(M)
n.d.,

ii) For M ≥ N, H2b|ZM
= HWM

= H
(M)
n.d..

Consequences

• Diagonalising H
(M)
n.d. for all M ≥ N is equivalent to diagonalising H2b.

• We can arbitrarily fix the parameters δ, yl/r and µl/r but
Y ∈ {YM ,M ≥ 0}, and is fixed by the sector ZM of H2b.

• The ”quantization condition” on Y is precisely the Nepomechie
condition.

• We have shown that it originates from Uqsl2-fusion rules.
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Loop models and lattice algebras
Uqsl2-invariant realisation

Bethe ansatz

To implement boundary Algebraic Bethe Ansatz we need :

• A solution of the Yang-Baxter equation R(u) (a.k.a R-matrix),

• A solution of the boundary Yang-Baxter equation K (u) (a.k.a
K -matrix),

• A reference state.

All these ingredients are available for H2b thanks to the Uqsl2 symmetry !

• R(u) is constructed from the R-matrix of Uqsl2.

• No need for a K -matrix: just use the affine R-matrix in Verma
representation !

• The reference state is just the highest-weight vector
|⇑〉 := |0〉 ⊗ |↑〉⊗N ⊗ |0〉.
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Bethe ansatz

Uqsl2 admits a universal R-matrix

R = q
H⊗H

2

∑
k≥0

(q− q−1)2k∏k
n=1(qn − q−n)

qk(k−1)/2Ek ⊗ Fk .

For two representations X and Y, the operators

PX ,Y ◦ RX ,Y : X ⊗ Y → Y ⊗ X ,
R−1Y,X ◦ PX ,Y : X ⊗ Y → Y ⊗X

where
PX ,Y : X ⊗ Y → Y ⊗X

x ⊗ y 7→ y ⊗ x

are Uqsl2-intertwiners.
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Bethe ansatz

Introduce, for any representation X of Uqsl2,

RX ,C2(u) := euRX ,C2 − e−uPC2,X ◦ R−1C2,X ◦ PX ,C2,

RC2,X (u) := euRC2,X − e−uPX ,C2 ◦ R−1X ,C2 ◦ PC2,X .

Then for any three representations X1,2,3 of Uqsl2 with at least two of
them isomorphic to C2 the Yang-Baxter equation

RX1,X2(u − v)RX1,X3(u)RX2,X3(v) = RX2,X3(v)RX1,X3(u)RX1,X2(u − v)

is satisfied.

This sufficient to build the monodromy and transfer matrix !
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Bethe ansatz

Define the monodromy

T (u) := T (u)T̂ (u) =

(
A(u) B(u)
C(u) D(u)

)
,

T (u) := R0,Vαr
(u − ζr )R0,N(u) . . .R0,1(u)R0,Vαl

(u − ζl) ,

T̂ (u) := RVαl
,0(u + ζl)R1,0(u) . . .RN,0(u)RVαr ,0(u + ζr )

and the transfer matrix

t(u) := qtr0T (u) = qA(u) + q−1D(u) .

By construction t(u) is Uqsl2-invariant and

H2b = c1 + c2
d

du

∣∣∣∣
u=~/2

t(u)

with q = e~, c1, c2 some explicit constants and µl/r related to ζl/r .
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Bethe ansatz

Set
|ψ〉 = B(v1) . . .B(vM) |⇑〉

and compute t(u) |ψ〉 using

• The commutators [A(u),B(v)] and [D(u),B(v)] given by the YBE ,
• The explicit eigenvalues of A(u) and D(u) when acting on |⇑〉 .

Then |ψ〉 is an eigenvector of H2b with eigenvalue

E ({vm}) =
M∑

m=1

sinh2(~)

sinh
(
vm − ~/2

)
sinh

(
vm + ~/2

)
iff the rapidities {vm}1≤m≤M satisfy the Bethe ansatz equations (BAE)

∆l(vm)∆r (vm)

∆l(−vm)∆r (−vm)

(
sinh

(
vm + ~/2

)
sinh

(
vm − ~/2

))2N

=
M∏
k=1
k 6=m

sinh(vm − vk + ~) sinh(vm + vk + ~)

sinh(vm − vk − ~) sinh(vm + vk − ~)

∆l/r (u) := 1− µl/r

sinh
(
u − ~/2

)
sinh

(
u + ~(αl/r − 1/2)

)
sinh(~) sinh

(
~αl/r

)
∝ sinh

(
u + ~

αl/r − 1

2
− ζl/r

)
sinh

(
u + ~

αl/r − 1

2
+ ζl/r

)
.
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Loop models and lattice algebras
Uqsl2-invariant realisation

Bethe ansatz

Remarks

• These are precisely the ”simpler” Bethe ansatz equations under the
Nepomechie constraint.

• The magnon number M ≥ 0 can be arbitrarily large.

• We expect that the BAE provide an eigenbasis of H2b|ZM
.

What about Hn.d. ?

• If M ≥ N, H
(M)
n.d. = H2b|ZM

so the BAE are the same.

• If 0 ≤ M ≤ N − 1 H2b|ZM
is only a subblock of H

(M)
n.d....

• ...but one can reach the other block using the representation theory
of the two-boundary TL algebra.

• One needs to transform αl/r , µl/r → −αl/r ,−µl/r and
M → N −M − 1 in the BAE.

• We can even reach ”negative” values of M.
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Bethe ansatz

Scaling limit : one-boundary case

• For q = e
iπ
p , p ∈]1,+∞[ the model is critical and we expect its

scaling limit to be described by a CFT.
• Using the BAE and a distribution-based method we can compute the

1/N corrections to the energy levels.

Denote Ej the ground state of Hb|HN/2−j
. Then

Ej = Neb + Es +
πvF
N

(
− c

24
+ hα,α+2j

)
+ o(1/N2) ,

where

• eb is the bulk energy per site,

• Es is the surface energy,

• vF = p sin π
p is the Fermi velocity,

• c = 1− 6
p(p−1) is the central charge,

• hr ,s = (pr−(p−1)s)2−1
4p(p−1) are conformal weights.
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By the Cardy formula these corrections provide the CFT spectrum in the
continuum

lim
N→∞

trHN/2−j
q

N
πvF

(Hb−Neb−Es ) =
q−

c
24+hα,α+2j∏+∞

n=1(1− qn)
.

Application

Loop model partition function on a cylinder of parameter τ = M/N :

Zτ (δ, y) =
∑
j∈Z

sin π(α+1)
p

sin πα
p

q−
c
24+hα,α+2j∏+∞

n=1(1− qn)

where q = e−τ , δ = 2 cos πp and y =
sin π(α+1)

p

sin πα
p

.

• Does not depend on the coupling constant µ.

• Related to spanning forests and (η, ξ) ghost CFT for p = 2.
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Scaling limit : two-boundary case

Coulomb gas/loop model prediction:

lim
N→∞

tr q
N
πvF

(H
(M)
n.d.−Neb−Es ) =

∑
j∈Z

q−
c
24+hαM ,αM+2j∏+∞
n=1(1− qn)

with αM := αl + αr + N/2− 1− 2M.

• We can recover part of this spectrum using the same methods.

• Unclear how to recover the rest.

• Additional symmetry in the continuum ?
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Conclusion
Summary

• We started with the XXZ Hamiltonian Hn.d. with arbitrary boundary

fields
−→
h l/r .

• We reinterpreted it as an abstract element H of the two-boundary
TL algebra evaluated in the 2N -dimensional vacuum module W of
2Bδ,yl/r ,Y ,N .

• We constructed a Uqsl2-invariant Hamiltonian H2b whose sectors
ZM are the vacuum modules WM of 2Bδ,yl/r ,YM ,N .

• We diagonalised H2b|ZM
and thus Hn.d. by algebraic Bethe ansatz

for arbitrary values of the parameters δ, yl/r , µl/r and Y = YM .

• We saw that the Nepomechie condition Y ∈ {YM ,M ≥ 0}
originates from Uqsl2 fusion rules.

Open questions

• A spin chain covering all values of Y .

• CFT scaling limit at criticality and relation to Virasoro fusion.

• QFT interpretation ?

• Relation to loop models, 2D random geometry, ASEP...
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Loop models and lattice algebras
Uqsl2-invariant realisation

Bethe ansatz

Backstage : ”Dual” BAE

∆l(vm)∆r (vm)

∆l(−vm)∆r (−vm)

(
sinh

(
vm + ~/2

)
sinh

(
vm − ~/2

))2N

=
M∏
k=1
k 6=m

sinh(vm − vk + ~) sinh(vm + vk + ~)

sinh(vm − vk − ~) sinh(vm + vk − ~)

with M = N −M − 1 and

∆̄l/r (u) =: 1− µl/r

sinh
(
u − ~/2

)
sinh

(
u − ~(αl/r + 1/2)

)
sinh(~) sinh

(
~αl/r

)
=

sinh
(
u − ~αl/r+1

2 − ζl/r
)

sinh
(
u − ~αl/r+1

2 + ζl/r

)
sinh

(
~αl/r

2 − ζl/r
)

sinh
(

~αl/r

2 + ζl/r

) .

They come from the isomorphism

2Bδ,yl/r ,YM ,N
∼= 2Bδ,δ−yl/r ,δ−yl−yr+YM ,N

, bl/r → 1− bl/r .



Loop models and lattice algebras
Uqsl2-invariant realisation

Bethe ansatz

Backstage : Explicit expressions of bl/r

We have

bl =
1

[αl ]q

qαl−q−1K−1

q−q−1 F

qK−1E qK−1−q−αl

q−q−1

 , br =
1

[αr ]q

qK−q−αr

q−q−1 qKF

E qαr−q−1K
q−q−1


written as 2× 2 matrices with elements in End(Vαl/r

).

bl/r is the projector on the Vαl/r+1 factor of Vαl
⊗ C2 or C2 ⊗ Vαr .
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