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The Hamiltonian of the open XXZ spin chain (C?)®N of length N with
arbitrary boundary fields is given by
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with g and h/, 7 parameters and Pauli matrices
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Appears in the 6-vertex model, boundary loop models, ASEP...
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Known to be integrable but has many unusual features:
e U(1) symmetry broken for general Z),/,,
e No obvious reference state (as [1)*" for usual XXZ),
e No simple and direct Bethe ansatz procedure,
e Additional "inhomogeneous” term in the Bethe ansatz equations,

e The Bethe ansatz equations simplify if the parameters satisfy a
" quantization” condition (the Nepomechie condition).

We want to understand these properties using the representation theory
of lattice algebras and U;sl; quantum group.

Main message : Non-compact spin chains contain a lot of
interesting (and unexplored) physics.
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U
[

i i+1

and



Loop models and lattice algebras

Configurations are built by stacking these diagrams on top of each other.



Loop models and lattice algebras

Configurations are built by stacking these diagrams on top of each other.

For example, a configuration on N = 6 sites :



Loop models and lattice algebras

Configurations are built by stacking these diagrams on top of each other.

For example, a configuration on N = 6 sites :

€56 =

o C
o C



Loop models and lattice algebras

Configurations are built by stacking these diagrams on top of each other.

For example, a configuration on N = 6 sites :

J J

€5€1 =

€56 =




Loop models and lattice algebras

Configurations are built by stacking these diagrams on top of each other.

For example, a configuration on N = 6 sites :
€462 =

€5€1 =

€56 =

D
D



Loop models and lattice algebras

Configurations are built by stacking these diagrams on top of each other.

For example, a configuration on N = 6 sites :

€462 =

€5€1 =

€56 =

VR

D
D

= €4€265€165€E2
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Graphical rules :

U

M
0 : weight of a closed loop.

U

€i€i+1€6 = e = e { U ‘{ { .. =g
M

M

The resulting algebra is called the Temperley-Lieb (TL) algebra and
denoted TLs . J
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What are its irreducible representations ?

e TLs n is finite-dimensional so there are finitely many.
e Standard modules W; labelled by 0 < j < N/2.
e W; have a basis of half-diagrams with 2/ through lines.

For example, for N =4
Wo=C(\U U AU J)
wi=Cc(\UJ [ '] U '] T U)

We=C 111
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To deal with boundary conditions we need to extend TL; y.

Introduce an additional generator b; satisfying
b/2=b/, 61[)/(-3‘1:)//617 [b/,e,']ZO for 2§I§N—1

with y; € C. Graphically

- W,
_ Q_y,m
N

This defines the Blob algebra B; ,, v. J
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We can further extend B;,y, v by adding a right generator b,

satisfying
- |\
_ G.: -
I

with some weight y, € C, that is

b2 = b, , env—1bren—1 = yren—1, [br, e,~] =0 for 1<i<N-2.

r
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We also need a weight to a loop carrying both @ and WM. Set
@ A

with some weight Y € C.

This defines the two-boundary Temperley-Lieb algebra 2B;,, v n. J
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What are the irreducible representations of 2Bg7yl/hy7/\/ ?

e The standard modules of 2B; y, v n are similar to TLs .

e We need to decorate the half diagrams by @, B and also
O:=1—bandd:=1— b,.

e There is a distinguished vacuum module W of dimension 2V with
no through lines.

For example, for N = 2

woo( ow ow ed o)
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Introduce
N—1

H:=—wb — pb, — Z & € 2Bsy,,,v.N
-1

for some 1/, € C. Then

Theorem (J. de Gier, A. Nichols '09)

%
For some explicit mapping of parameters (q, h/.) <+ (8, Y1/r, Y5 f1/r)

Hn.d. = HW

Idea : Find a different realisation of W to diagonalise H, 4. !
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Defmiion

Uysly is generated by E, F, K and K~ with relations

K—K!
KEK™'=¢’E, KFK'=gq7%F, [EF]= e

It is a g-deformation of the Lie algebra sl, : in the limit ¢ — 1 we recover
the commutation relations of the sl, triple (E, F,H) with K*1 = g*H.

Representations

Very similar to sl;. For example, the spin-% representation in the basis

{I1),14)} is given by

0 1 _ 0 0
oz ) meme (0 )
2=
+1 _ 407 _ (4 0
K([:2 =q —(0 q:|:1> .

Using the coproduct of U,sl, it can be extended to an action on (C?)®V.
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e In the XXZ spin chain the global SU(2) symmetry of XXX is broken.
e For special boundary conditions

_ N—1
qa—q '

(0% —UZ)Jr1 E PP I i, Bk, I + qila-za-z
4 N 1 2 iYi+1 i Y+l 2 iYi+1
i=1

Hsym. =

is invariant under its g-deformation Ugsl,.
e More generally, the hamiltonian densities

1 X _x Cl"‘q71 z_z q_qil z z
& =3 (J"U:'JrlJFU?/Uﬁ-lJr 2 (0Fofn = 1) | =5 (071 —07)

such that

+ N-1
Hom, = 0 (N-1) - Y ¢
i=1

also commute with Ugsl...

e ... and generate a representation of TLsy with § =q+q~ 1!
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Can we find a Ugsl-invariant representation of 2Bs y,, v.n 7

Problem : the e; already generate the full centraliser of Ugsl.

Strategy

e Take irreps X/, of Uysly and consider the bigger Hilbert space
X ®(C?)°eN g x,.

e Look for some Uyslp-invariant operators by, acting only on the two
leftmost /rightmost sites and satisfying the relations of 2Bs, v n-

For X/, we will take infinite-dimensional Verma modules of Ugsl,.

Definition
Take a € C and set V,, := Py, C|n). Then Uysly acts on V, as

Ev, [n) = [nlq[a = nlq[n = 1),

—X

9 —q

Fy,|n)=|n+1), [x]q ::W

KL ) = (120 o)
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One can show that we have the Uysl, irrep decomposition
Va ® (CZ = Va+1 @ Va_l o

e Consider the Hilbert space V,, ® (C?)®N @ V,,.
e Take b; the projector on V,, 41 acting on V,, ® C2
e Take b, the projector on V,, .1 acting on C> ® V.

Then
b/2:b/7 erber = yjer, [b,,e,-]zO for 2<i<N-1

b?=b,, en_iben_1=yren_1, [br,eg]=0 for 1<i<N-2

with
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What about the weight Y 7

It turns out Y is not a number but a central element of Ugsl; !

Ugslo admits a central Casimir element

C:=(q—q Y?FE+gqK+q K.

e Evaluated on our spin chain V,, ® (C?)®N @ V,,, it commutes with
the Uysly action and also the e;, by and b,.

o With
qa/+a,+1 + qfalfa,fl - C

(@ —gm)(q —q7)
ei, by and b, define a representation of the (universal) two-boundary
Temperley-Lieb algebra.
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What values can Y take ?

The Casimir C is constant on any irrep of Uysl,. We just need to
compute the decomposition of V,, ® (C?)®N ® V,, into Uyslp-irreps !

Using the fusion rules

Vo ®@Vs =@ Vars-1-20 and  Va®C?=Voy1® Va1
n>0

we obtain

Vo, ® (CHN RV, = @ Vorta,—14N—2M @ Zm
M>0

where the Z), are some multiplicity spaces of dimension

M oN
} Z( > for O<MN
dy =dimZy = - k

D for M>N
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Since Cy, = q* +q~ %,

[M+17§L [a/+a,—/\/l+%]

YZM: d = YM.

[ov]qlevr]q

Therefore Zy, is a representation of 2B vu,n forall M > 0!

Yi/rs

More precisely

Theorem (D.C., J.L. Jacobsen, A.M. Gainutdinov, H. Saleur '22)

Denote W) the 2V dimensional vacuum module of 2B(;7y,/r,yM7N. Then

i) For0 <M < N —1, Zy is isomorphic to an irreducible
dy-dimensional sub-block of Wy,

i) For M > N, Zy = Wy and is irreducible.
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Corollary

Define
N-1
Hop := —puby — pirbr — Z €
i=1

acting on Vs, ® (C?)®N @V, and denote HI%? = Hy.a.(Y = Yu). Then
i) For0 < M < N —1, Haplz, is equal to a dy-dimensional sub-block
of Hyy, = H™M),
i) For M > N, Hap|z, = Hy,, = H™).

Consequences

e Diagonalising H ) for all M > N is equivalent to diagonalising Hop.

e We can arbltrarlly flx the parameters 4, y;/, and i/, but
Y € {Yum,M >0}, and is fixed by the sector Zy of Hap.

e The "quantization condition” on Y is precisely the Nepomechie
condition.

e We have shown that it originates from Uysl>-fusion rules.




Bethe ansatz

© Bethe ansatz



Bethe ansatz

To implement boundary Algebraic Bethe Ansatz we need :




Bethe ansatz

To implement boundary Algebraic Bethe Ansatz we need :

e A solution of the Yang-Baxter equation R(u) (a.k.a R-matrix),




Bethe ansatz

To implement boundary Algebraic Bethe Ansatz we need :
e A solution of the Yang-Baxter equation R(u) (a.k.a R-matrix),

o A solution of the boundary Yang-Baxter equation K(u) (a.k.a
K-matrix),




Bethe ansatz

To implement boundary Algebraic Bethe Ansatz we need :
e A solution of the Yang-Baxter equation R(u) (a.k.a R-matrix),

o A solution of the boundary Yang-Baxter equation K(u) (a.k.a
K-matrix),

o A reference state.




Bethe ansatz

To implement boundary Algebraic Bethe Ansatz we need :
e A solution of the Yang-Baxter equation R(u) (a.k.a R-matrix),

o A solution of the boundary Yang-Baxter equation K(u) (a.k.a
K-matrix),

o A reference state.

All these ingredients are available for H,, thanks to the Ugsl, symmetry !




Bethe ansatz

To implement boundary Algebraic Bethe Ansatz we need :
e A solution of the Yang-Baxter equation R(u) (a.k.a R-matrix),

o A solution of the boundary Yang-Baxter equation K(u) (a.k.a
K-matrix),

o A reference state.

All these ingredients are available for H,, thanks to the Ugsl, symmetry !

e R(u) is constructed from the R-matrix of Ugsls.




Bethe ansatz

To implement boundary Algebraic Bethe Ansatz we need :
e A solution of the Yang-Baxter equation R(u) (a.k.a R-matrix),

o A solution of the boundary Yang-Baxter equation K(u) (a.k.a
K-matrix),

o A reference state.

All these ingredients are available for H,, thanks to the Ugsl, symmetry !
e R(u) is constructed from the R-matrix of Ugsls.

e No need for a K-matrix: just use the affine R-matrix in Verma
representation !




Bethe ansatz

To implement boundary Algebraic Bethe Ansatz we need :
e A solution of the Yang-Baxter equation R(u) (a.k.a R-matrix),

o A solution of the boundary Yang-Baxter equation K(u) (a.k.a
K-matrix),
o A reference state.

All these ingredients are available for Hy, thanks to the Uqsl, symmetry !
e R(u) is constructed from the R-matrix of Ugsls.

e No need for a K-matrix: just use the affine R-matrix in Verma
representation !

e The reference staI:cIe is just the highest-weight vector
1) :=10) ® [1)*" ®0).
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Uyslp admits a universal R-matrix

o 1y\2k
R=g"?" Y %qk(k—n/%k ® F*
k>0 Hn:1(q —q7")

For two representations X’ and )/, the operators

PxyoRxy:@H X®@Y —YVQX,
RyxoPry: AQY —-YVRX
where
Pry: X@Y—->Y®X
XQYy—>y®x

are Ugslp-intertwiners.
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RX,(CQ(U) = e”RX@z — e_”P@’/y o RE;;X (9] PX,(CZ,

Rczyx(u) = e”R(CzVX — e7”PX7Cz o R;];(? o PC27X o

Then for any three representations & 5 3 of Ugsly with at least two of
them isomorphic to C? the Yang-Baxter equation

Ray,x,(u — V)R 2, (u) R, 2, (V) = Ray a0, (V) Ry a0, (u) Ry e, (U — v)

is satisfied.

This sufficient to build the monodromy and transfer matrix ! J
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Define the monodromy
T = T = (3 50)) -

T(U) = Ro)va,(u — Cr)RO,N(u) 500 RO,l(u)RO,V,,,(U — C/) 9
7A'(u) = RV(V”O(U 4 CI)RL()(U) 5300 RN70(U)RV0”0(U —+ Cr)

and the transfer matrix

t(u) = atre T (u) = q.A(u) +q~"D(u).

By construction t(u) is Ugslp-invariant and

d
Hop =1 +co— t(u)
du u=h/2

with g = e”, c1, ¢, some explicit constants and tyyr related to ¢y,
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Set
[¥) = B(v1) ... B(vwm) [)
and compute t(u) 1)) using
e The commutators [A(u), B(v)] and [D(u), B(v)] given by the YBE,
e The explicit eigenvalues of .A(u) and D(u) when acting on |f}) .
Then [¢) is an eigenvector of Hyp, with eigenvalue
M

E({vm}) =

m=1

sinh?(h)
sinh(vim — 1/2) sinh (v, + 71/2)

iff the rapidities {v, }1<m<m satisfy the Bethe ansatz equations (BAE)

A(vin) A (Vi) sinh(vm + 11/2) 2 B ﬁ sinh(vy, — vk + h)sinh(vy, + vk + h)
A)(=Vm)Ar(=Vm) \ sinh (v, — 1/2) N - sinh(vi — vic = h) sinh(vin + vic — h)

sinh (u — 11/2) sinh <u + h(ay), — 1/2))
sinh(%) sinh(ha,/,)

i Oé//,—]. . O4//r_]-
ocsinh| u+h 5 —Cyr ) sinh{ u+h > +Ciyr ) -

Ajyp(u) :=1—= py,
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e These are precisely the "simpler’ Bethe ansatz equations under the
Nepomechie constraint.

e The magnon number M > 0 can be arbitrarily large.
e We expect that the BAE provide an eigenbasis of Haplz,,-

What about H, 4. ?

o It M >N, HM = Hyy| 2, so the BAE are the same.

e If 0 < M < N —1 Hy|z, is only a subblock of H™) ..

e ...but one can reach the other block using the representation theory
of the two-boundary TL algebra.

e One needs to transform «y ., p1y/, — —avy/p, — gy and
M — N — M —1 in the BAE.

e We can even reach "negative” values of M.
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Scaling limit : one-boundary case

e Forq= e’ , p €]1, +oo[ the model is critical and we expect its
scaling limit to be described by a CFT.

e Using the BAE and a distribution-based method we can compute the
1/N corrections to the energy levels.

Denote E; the ground state of Hb|HN/27J,. Then

TVE C
Ej = Ne, + E; + T <_24 + ha,a+2j> T O(l/Nz),
where
e ¢, is the bulk energy per site,

E; is the surface energy,

e vp = psin % is the Fermi velocity,
_1__6

e c=1 op=T) 1S the central charge,

o h o= % are conformal weights.
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By the Cardy formula these corrections provide the CFT spectrum in the
continuum

q72£4+ha,a+2j
@ —q2)

] N (Hy— Ney—E.
lim tl"HN/zi,q""/F( b—Ney—Es) _
N— oo g
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By the Cardy formula these corrections provide the CFT spectrum in the
continuum

— i Hhaas2j
#(Hb_Neb_Es) _ q 24 s t2)

Jimtra,,  q7F T=a_a
E

|
| \

Application

Loop model partition function on a cylinder of parameter 7 = M/N :

i m(a+1) — & tho o)
q 24
Z.(8,y) = —
’ Z sin %[5 —a7)
sfim w(ap+1)

where g = e™ 7, 5:2cos% and y = —————.
sin =&
P
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By the Cardy formula these corrections provide the CFT spectrum in the
continuum

— i Hhaas2j
#(Hb_Neb_Es) _ q 24 s t2)

Jimtra,,  q7F T=a_a
n=

Application

Loop model partition function on a cylinder of parameter 7 = M/N :

i m(a+1) — & tho o)
q 24
Z:(6,y) = Z — +
jez sin % Hn;xl)(l -q")
h Td=2 T and sin W(apﬂ)
ere =e , = ZCOS — a = =
e p NGV sin %

e Does not depend on the coupling constant p.
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By the Cardy formula these corrections provide the CFT spectrum in the
continuum

— i Hhaas2j
#(Hb_Neb_Es) _ q 24 s t2)

Jimtra,,  q7F T=a_a
n=

Application

Loop model partition function on a cylinder of parameter 7 = M/N :

i m(a+1) — & tho o)
q 24
Z:(6,y) = Z — +
jez sin % Hn;xl)(l -q")
h Td=2 T and sin W(apﬂ)
ere =e , = ZCOS — a = =
e p NGV sin %

e Does not depend on the coupling constant p.

e Related to spanning forests and (7, £) ghost CFT for p = 2.




Bethe ansatz

Scaling limit : two-boundary case




Bethe ansatz

Scaling limit : two-boundary case

Coulomb gas/loop model prediction:

X N (H( — Nep— E) q 24+h0‘M apt
lim trgmF" »d E B I
N—oco ( — )
JEZ n=1

with ap ==y +a, + N/2—1—2M.
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Scaling limit : two-boundary case

Coulomb gas/loop model prediction:

c .
q7ﬁ+h&M,aM+2j

. N M pNe, —E,
lim trq’fVF( ha ~Nev—Es) _ Ziﬂm
N—oo iz n:l(]' _ qn)

with ap ==y +a, + N/2—1—2M.

e We can recover part of this spectrum using the same methods.

e Unclear how to recover the rest.
e Additional symmetry in the continuum ?
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Conclusion

o We sta_>rted with the XXZ Hamiltonian H,, 4. with arbitrary boundary
fields h ;.

e We reinterpreted it as an abstract element H of the two-boundary
TL algebra evaluated in the 2N-dimensional vacuum module W of
2857},//”\/7/\/.

e We constructed a Ugslp-invariant Hamiltonian H,;, whose sectors
Zm are the vacuum modules Wy, of 2857},,/”\/,\,,,,\,.

e We diagonalised Hap|z,, and thus H, 4. by algebraic Bethe ansatz
for arbitrary values of the parameters 4, y;/,, p;/r and Y = Y.

e We saw that the Nepomechie condition Y € {Yy,, M > 0}
originates from Ugsl, fusion rules.

Open questions

e A spin chain covering all values of Y.

e CFT scaling limit at criticality and relation to Virasoro fusion.
e QFT interpretation ?
e Relation to loop models, 2D random geometry, ASEP...




Bethe ansatz

Backstage : "Dual” BAE

Ay(Vin) AL (Vi) (sinh(vm + h/2)>2N B M sinh(vy, — vk + K) sinh(v, + vk
2 11

sinh (vm — 1i/2) e sinh(vy, — vk — ) sinh(v,, + v
k#m

with M =N — M — 1 and
sinh (u — £/2) sinh(u — h(ay, + 1/2))
sinh(h)sinh (ha,, )
sinh(u Rt g,/,) sinh(u — st c,/r)
sinh ("5 = Gy, ) sinh (52 + ¢, ) '

They come from the isomorphism

A//r(U) =1—=puy,

2Bs.y,,, viun = 2Bs sy, 6 yi—y Vi N 5 by = 1— by
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Backstage : Explicit expressions of by,

We have
g% —q K" gK—q~ "
b — 1 q—q ! B F B b, — 1 q—q~! qui
| K-1_ o y, Pr ar _ -1k
[ov]q gK™'E % [ovr]q E %

written as 2 X 2 matrices with elements in End(V,, ).

by, is the projector on the V,,, 11 factor of V,, ® C2or C2@V,,.
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