Algebraic Bethe ansatz for the open XXZ spin chain with non-diagonal boundary terms via $U_{q} \mathfrak{s l}_{2}$ symmetry

Dmitry Chernyak LPENS

Based on arXiv:2207.12772 with A.M. Gainutdinov and H. Saleur and arXiv:2212.09696 with A.M. Gainutdinov, J.L. Jacobsen and H.

Saleur

Les Diablerets, February 8, 2023

The Hamiltonian of the open $X X Z$ spin chain $\left(\mathbb{C}^{2}\right)^{\otimes N}$ of length N with arbitrary boundary fields is given by
$H_{\text {n.d. }}:=\vec{h}_{1} \cdot \vec{\sigma}_{1}+\vec{h}_{r} \cdot \vec{\sigma}_{N}+\frac{1}{2} \sum_{i=1}^{N-1}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}+\frac{\mathfrak{q}+\mathfrak{q}^{-1}}{2} \sigma_{i}^{z} \sigma_{i+1}^{z}\right)$
with \mathfrak{q} and $\vec{h}_{1 / r} 7$ parameters and Pauli matrices

$$
\sigma^{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma^{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma^{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Appears in the 6 -vertex model, boundary loop models, ASEP...

Motivation

Known to be integrable but has many unusual features:

Motivation

Known to be integrable but has many unusual features:

- $U(1)$ symmetry broken for general $\vec{h}_{1 / r}$,

Motivation

Known to be integrable but has many unusual features:

- U(1) symmetry broken for general $\vec{h}_{1 / r}$,
- No obvious reference state (as $|\uparrow\rangle^{\otimes N}$ for usual $X X Z$),

Motivation

Known to be integrable but has many unusual features:

- U(1) symmetry broken for general $\vec{h}_{I / r}$,
- No obvious reference state (as $|\uparrow\rangle^{\otimes N}$ for usual $X X Z$),
- No simple and direct Bethe ansatz procedure,

Motivation

Known to be integrable but has many unusual features:

- U(1) symmetry broken for general $\vec{h}_{/ / r}$,
- No obvious reference state (as $|\uparrow\rangle^{\otimes N}$ for usual XXZ),
- No simple and direct Bethe ansatz procedure,
- Additional "inhomogeneous" term in the Bethe ansatz equations,

Known to be integrable but has many unusual features:

- U(1) symmetry broken for general $\vec{h}_{1 / r}$,
- No obvious reference state (as $|\uparrow\rangle^{\otimes N}$ for usual XXZ),
- No simple and direct Bethe ansatz procedure,
- Additional "inhomogeneous" term in the Bethe ansatz equations,
- The Bethe ansatz equations simplify if the parameters satisfy a "quantization" condition (the Nepomechie condition).

Known to be integrable but has many unusual features:

- $U(1)$ symmetry broken for general $\vec{h}_{1 / r}$,
- No obvious reference state (as $|\uparrow\rangle^{\otimes N}$ for usual XXZ),
- No simple and direct Bethe ansatz procedure,
- Additional "inhomogeneous" term in the Bethe ansatz equations,
- The Bethe ansatz equations simplify if the parameters satisfy a "quantization" condition (the Nepomechie condition).

We want to understand these properties using the representation theory of lattice algebras and $U_{\mathfrak{q}} \mathfrak{s l}_{2}$ quantum group.

Known to be integrable but has many unusual features:

- $U(1)$ symmetry broken for general $\vec{h}_{1 / r}$,
- No obvious reference state (as $|\uparrow\rangle^{\otimes N}$ for usual XXZ),
- No simple and direct Bethe ansatz procedure,
- Additional "inhomogeneous" term in the Bethe ansatz equations,
- The Bethe ansatz equations simplify if the parameters satisfy a "quantization" condition (the Nepomechie condition).

We want to understand these properties using the representation theory of lattice algebras and $U_{q} \mathfrak{s l}_{2}$ quantum group.

Main message : Non-compact spin chains contain a lot of interesting (and unexplored) physics.

Outline

（1）Loop models and lattice algebras
（2）$U_{\mathfrak{q}} \mathfrak{s l}_{2}$－invariant realisation
（3）Bethe ansatz
(1) Loop models and lattice algebras

(2) $U_{q} \mathfrak{S l}_{2}$-invariant realisation

(3) Bethe ansatz

Let N be an integer. For all $1 \leq i \leq N-1$ consider the diagrams

and

Configurations are built by stacking these diagrams on top of each other.

Configurations are built by stacking these diagrams on top of each other.
For example, a configuration on $N=6$ sites :

Configurations are built by stacking these diagrams on top of each other.
For example, a configuration on $N=6$ sites :

Configurations are built by stacking these diagrams on top of each other.
For example, a configuration on $N=6$ sites :

Configurations are built by stacking these diagrams on top of each other.
For example, a configuration on $N=6$ sites :

Configurations are built by stacking these diagrams on top of each other.
For example, a configuration on $N=6$ sites :

Graphical rules :

$\delta:$ weight of a closed loop.

Graphical rules :

$\delta:$ weight of a closed loop.

Graphical rules :

$\delta:$ weight of a closed loop.

The resulting algebra is called the Temperley-Lieb (TL) algebra and denoted $\mathrm{TL}_{\delta, N}$.

Example:

What are its irreducible representations?

What are its irreducible representations ?

- $\mathrm{TL}_{\delta, N}$ is finite-dimensional so there are finitely many.

What are its irreducible representations?

- $\mathrm{TL}_{\delta, N}$ is finite-dimensional so there are finitely many.
- Standard modules \mathcal{W}_{j} labelled by $0 \leq j \leq N / 2$.

What are its irreducible representations ?

- $\mathrm{TL}_{\delta, N}$ is finite-dimensional so there are finitely many.
- Standard modules \mathcal{W}_{j} labelled by $0 \leq j \leq N / 2$.
- \mathcal{W}_{j} have a basis of half-diagrams with $2 j$ through lines.

What are its irreducible representations ?

- $\mathrm{TL}_{\delta, N}$ is finite-dimensional so there are finitely many.
- Standard modules \mathcal{W}_{j} labelled by $0 \leq j \leq N / 2$.
- \mathcal{W}_{j} have a basis of half-diagrams with $2 j$ through lines.

For example, for $N=4$

$$
\begin{gathered}
\mathcal{W}_{0}=\mathbb{C}\langle\cup \cup, V \cup \\
\mathcal{W}_{1}=\mathbb{C}\langle\cup!!!: U!!!!\cup\rangle \\
\mathcal{W}_{2}=\mathbb{C}\langle!!!!\rangle
\end{gathered}
$$

$\mathrm{TL}_{\delta, N}$ acts diagrammatically on this basis. For example :
$\mathrm{TL}_{\delta, N}$ acts diagrammatically on this basis. For example :

$\mathrm{TL}_{\delta, N}$ acts diagrammatically on this basis. For example :

$\mathrm{TL}_{\delta, N}$ acts diagrammatically on this basis. For example :

To deal with boundary conditions we need to extend $\mathrm{TL}_{\delta, N}$.

To deal with boundary conditions we need to extend $\mathrm{TL}_{\delta, N}$.
Introduce an additional generator b_{l} satisfying

$$
b_{l}^{2}=b_{l}, \quad e_{1} b_{l} e_{1}=y_{l} e_{1}, \quad\left[b_{l}, e_{i}\right]=0 \quad \text { for } \quad 2 \leq i \leq N-1
$$

with $y_{l} \in \mathbb{C}$.

To deal with boundary conditions we need to extend $\mathrm{TL}_{\delta, N}$.
Introduce an additional generator b_{l} satisfying

$$
b_{l}^{2}=b_{l}, \quad e_{1} b_{l} e_{1}=y_{l} e_{1}, \quad\left[b_{l}, e_{i}\right]=0 \quad \text { for } \quad 2 \leq i \leq N-1
$$

with $y_{l} \in \mathbb{C}$. Graphically

$$
\left.b_{l}=\emptyset \quad \mid \quad \cdots\right\rfloor \mid
$$

To deal with boundary conditions we need to extend $\mathrm{TL}_{\delta, N}$.
Introduce an additional generator $b_{\text {, }}$ satisfying

$$
b_{l}^{2}=b_{l}, \quad e_{1} b_{l} e_{1}=y_{l} e_{1}, \quad\left[b_{l}, e_{i}\right]=0 \quad \text { for } \quad 2 \leq i \leq N-1
$$

with $y_{l} \in \mathbb{C}$. Graphically

$$
\left.b_{l}=\emptyset \quad \mid \quad \cdots\right\rfloor \mid
$$

To deal with boundary conditions we need to extend $\mathrm{TL}_{\delta, N}$.
Introduce an additional generator $b_{\text {, }}$ satisfying

$$
b_{l}^{2}=b_{l}, \quad e_{1} b_{l} e_{1}=y_{l} e_{1}, \quad\left[b_{l}, e_{i}\right]=0 \quad \text { for } \quad 2 \leq i \leq N-1
$$

with $y_{l} \in \mathbb{C}$. Graphically

$$
\left.b_{l}=\emptyset \quad \mid \quad \cdots\right\rfloor \mid
$$

This defines the Blob algebra $\mathrm{B}_{\delta, y_{1}, N}$.

We can further extend $\mathrm{B}_{\delta, y_{l}, N}$ by adding a right generator b_{r}

$$
b_{r}=\lceil\ldots
$$

We can further extend $\mathrm{B}_{\delta, y_{1}, N}$ by adding a right generator b_{r}

$$
b_{r}=|\quad \cdots \quad|
$$

satisfying

with some weight $y_{r} \in \mathbb{C}$, that is
$b_{r}^{2}=b_{r}, \quad e_{N-1} b_{r} e_{N-1}=y_{r} e_{N-1}, \quad\left[b_{r}, e_{i}\right]=0 \quad$ for $\quad 1 \leq i \leq N-2$.

We also need a weight to a loop carrying both \bullet and $\boldsymbol{\square}$.

We also need a weight to a loop carrying both \bullet and $\boldsymbol{\square}$. Set

with some weight $Y \in \mathbb{C}$.

We also need a weight to a loop carrying both \bullet and $\boldsymbol{\square}$. Set

with some weight $Y \in \mathbb{C}$.

This defines the two-boundary Temperley-Lieb algebra $2 \mathrm{~B}_{\delta, y_{/ / r}, Y, N}$.

What are the irreducible representations of $2 \mathrm{~B}_{\delta, y_{/ / r}, Y, N}$?

What are the irreducible representations of $2 \mathrm{~B}_{\delta, y_{/ / r}, Y, N}$?

- The standard modules of $2 \mathrm{~B}_{\delta, y_{1 / r}, Y, N}$ are similar to $\mathrm{TL}_{\delta, N}$.

What are the irreducible representations of $2 \mathrm{~B}_{\delta, y_{/ / r}, Y, N}$?

- The standard modules of $2 \mathrm{~B}_{\delta, y_{1 / r}, Y, N}$ are similar to $\mathrm{TL}_{\delta, N}$.
- We need to decorate the half diagrams by \bullet and also $O:=1-b_{l}$ and $\square:=1-b_{r}$.

What are the irreducible representations of $2 \mathrm{~B}_{\delta, y_{/ / r}, Y, N}$?

- The standard modules of $2 \mathrm{~B}_{\delta, y_{1 / r}, Y, N}$ are similar to $\mathrm{TL}_{\delta, N}$.
- We need to decorate the half diagrams by \bullet and also $0:=1-b_{l}$ and $\square:=1-b_{r}$.
- There is a distinguished vacuum module \mathcal{W} of dimension 2^{N} with no through lines.

What are the irreducible representations of $2 \mathrm{~B}_{\delta, y_{/ / r}, Y, N}$?

- The standard modules of $2 \mathrm{~B}_{\delta, y_{1 / r}, Y, N}$ are similar to $\mathrm{TL}_{\delta, N}$.
- We need to decorate the half diagrams by $\boldsymbol{\square}$ and also $0:=1-b_{l}$ and $\square:=1-b_{r}$.
- There is a distinguished vacuum module \mathcal{W} of dimension 2^{N} with no through lines.

For example, for $N=2$

$$
\mathcal{W}=\mathbb{C}\langle\text { b⿴, bை, bod, bd }\rangle
$$

Introduce

$$
\mathbf{H}:=-\mu_{l} b_{l}-\mu_{r} b_{r}-\sum_{i=1}^{N-1} e_{i} \in 2 \mathrm{~B}_{\delta, y_{l / r}, Y, N}
$$

for some $\mu_{1 / r} \in \mathbb{C}$.

Introduce

$$
\mathbf{H}:=-\mu_{l} b_{l}-\mu_{r} b_{r}-\sum_{i=1}^{N-1} e_{i} \in 2 \mathrm{~B}_{\delta, y_{/ / r}, Y, N}
$$

for some $\mu_{I / r} \in \mathbb{C}$. Then

Theorem (J. de Gier, A. Nichols '09)

For some explicit mapping of parameters $\left(\mathfrak{q}, \vec{h}_{1 / r}\right) \leftrightarrow\left(\delta, y_{l / r}, Y, \mu_{1 / r}\right)$

$$
H_{\text {n.d. }}=\mathbf{H}_{\mathcal{W}}
$$

Introduce

$$
\mathbf{H}:=-\mu_{l} b_{l}-\mu_{r} b_{r}-\sum_{i=1}^{N-1} e_{i} \in 2 \mathrm{~B}_{\delta, y_{/ / r}, Y, N}
$$

for some $\mu_{I / r} \in \mathbb{C}$. Then

Theorem (J. de Gier, A. Nichols '09)

For some explicit mapping of parameters $\left(\mathfrak{q}, \vec{h}_{1 / r}\right) \leftrightarrow\left(\delta, y_{l / r}, Y, \mu_{/ / r}\right)$

$$
H_{\text {n.d. }}=\mathbf{H}_{\mathcal{W}}
$$

Idea : Find a different realisation of \mathcal{W} to diagonalise $H_{\text {n.d. }}$!

(1) Loop models and lattice algebras

(2) $U_{\mathfrak{q}} \mathfrak{S l}_{2}$-invariant realisation
(3) Bethe ansatz

Definition

$U_{\mathfrak{q}^{\prime} \mathfrak{I}_{2}}$ is generated by $\mathrm{E}, \mathrm{F}, \mathrm{K}$ and K^{-1} with relations

$$
K_{E E K}{ }^{-1}=\mathfrak{q}^{2} E, \quad K F K^{-1}=\mathfrak{q}^{-2} F, \quad[E, F]=\frac{K-K^{-1}}{\mathfrak{q}-\mathfrak{q}^{-1}} .
$$

It is a \mathfrak{q}-deformation of the Lie algebra $\mathfrak{s l}_{2}$: in the limit $\mathfrak{q} \rightarrow 1$ we recover the commutation relations of the $\mathfrak{s l}_{2}$ triple ($\mathrm{E}, \mathrm{F}, \mathrm{H}$) with $\mathrm{K}^{ \pm 1}=\mathfrak{q}^{ \pm H}$.

Definition

$U_{\mathfrak{q}^{\prime} I_{2}}$ is generated by $\mathrm{E}, \mathrm{F}, \mathrm{K}$ and K^{-1} with relations

$$
K_{E E K}{ }^{-1}=\mathfrak{q}^{2} E, \quad K F K^{-1}=\mathfrak{q}^{-2} F, \quad[E, F]=\frac{K-K^{-1}}{\mathfrak{q}-\mathfrak{q}^{-1}} .
$$

It is a \mathfrak{q}-deformation of the Lie algebra $\mathfrak{s l}_{2}:$ in the limit $\mathfrak{q} \rightarrow 1$ we recover the commutation relations of the $\mathfrak{s l}_{2}$ triple ($\mathrm{E}, \mathrm{F}, \mathrm{H}$) with $\mathrm{K}^{ \pm 1}=\mathfrak{q}^{ \pm \mathrm{H}}$.

Representations

Very similar to $\mathfrak{s l}_{2}$. For example, the spin- $\frac{1}{2}$ representation in the basis $\{|\uparrow\rangle,|\downarrow\rangle\}$ is given by

$$
\begin{gathered}
\mathrm{E}_{\mathbb{C}^{2}}=\sigma^{+}:=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad \mathrm{F}_{\mathbb{C}^{2}}=\sigma^{-}:=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \\
\mathrm{K}_{\mathbb{C}^{2}}^{ \pm 1}=\mathfrak{q}^{ \pm \sigma^{2}}=\left(\begin{array}{cc}
\mathfrak{q}^{ \pm 1} & 0 \\
0 & \mathfrak{q}^{\mp 1}
\end{array}\right) .
\end{gathered}
$$

Using the coproduct of $U_{q} \mathfrak{s l} l_{2}$ it can be extended to an action on $\left(\mathbb{C}^{2}\right)^{\otimes N}$.

- In the XXZ spin chain the global $\mathrm{SU}(2)$ symmetry of XXX is broken.
- In the XXZ spin chain the global $\mathrm{SU}(2)$ symmetry of XXX is broken.
- For special boundary conditions

$$
H_{\text {sym. }}:=\frac{\mathfrak{q}-\mathfrak{q}^{-1}}{4}\left(\sigma_{N}^{z}-\sigma_{1}^{z}\right)+\frac{1}{2} \sum_{i=1}^{N-1}\left(\sigma_{i}^{㐅} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}+\frac{\mathfrak{q}+\mathfrak{q}^{-1}}{2} \sigma_{i}^{z} \sigma_{i+1}^{z}\right)
$$

is invariant under its \mathfrak{q}-deformation $U_{\mathfrak{q} \mathfrak{H}_{2}}$.

- In the XXZ spin chain the global $\mathrm{SU}(2)$ symmetry of XXX is broken.
- For special boundary conditions

$$
H_{\text {sym. }}:=\frac{\mathfrak{q}-\mathfrak{q}^{-1}}{4}\left(\sigma_{N}^{z}-\sigma_{1}^{z}\right)+\frac{1}{2} \sum_{i=1}^{N-1}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}+\frac{\mathfrak{q}+\mathfrak{q}^{-1}}{2} \sigma_{i}^{z} \sigma_{i+1}^{z}\right)
$$

is invariant under its \mathfrak{q}-deformation $U_{\mathfrak{q} \mathfrak{s l}_{2} \text {. }}^{\text {. }}$

- More generally, the hamiltonian densities

$$
e_{i}=-\frac{1}{2}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}+\frac{\mathfrak{q}+\mathfrak{q}^{-1}}{2}\left(\sigma_{i}^{z} \sigma_{i+1}^{z}-1\right)\right)-\frac{\mathfrak{q}-\mathfrak{q}^{-1}}{4}\left(\sigma_{i+1}^{z}-\sigma_{i}^{z}\right)
$$

such that

$$
H_{\text {sym. }}=\frac{\mathfrak{q}+\mathfrak{q}^{-1}}{4}(N-1)-\sum_{i=1}^{N-1} e_{i}
$$

also commute with $U_{q} \mathfrak{s l}_{2} \ldots$

- In the XXZ spin chain the global $\mathrm{SU}(2)$ symmetry of XXX is broken.
- For special boundary conditions

$$
H_{\text {sym. }}:=\frac{\mathfrak{q}-\mathfrak{q}^{-1}}{4}\left(\sigma_{N}^{z}-\sigma_{1}^{z}\right)+\frac{1}{2} \sum_{i=1}^{N-1}\left(\sigma_{i}^{\times} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}+\frac{\mathfrak{q}+\mathfrak{q}^{-1}}{2} \sigma_{i}^{z} \sigma_{i+1}^{z}\right)
$$

is invariant under its \mathfrak{q}-deformation $U_{\mathfrak{q}} \mathfrak{s l}_{2}$.

- More generally, the hamiltonian densities

$$
e_{i}=-\frac{1}{2}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}+\frac{\mathfrak{q}+\mathfrak{q}^{-1}}{2}\left(\sigma_{i}^{z} \sigma_{i+1}^{z}-1\right)\right)-\frac{\mathfrak{q}-\mathfrak{q}^{-1}}{4}\left(\sigma_{i+1}^{z}-\sigma_{i}^{z}\right)
$$

such that

$$
H_{\text {sym. }}=\frac{\mathfrak{q}+\mathfrak{q}^{-1}}{4}(N-1)-\sum_{i=1}^{N-1} e_{i}
$$

also commute with $U_{q} \mathfrak{s l}_{2} \ldots$

- ... and generate a representation of $\mathrm{TL}_{\delta, N}$ with $\delta=\mathfrak{q}+\mathfrak{q}^{-1}$!

Can we find a $U_{\mathfrak{q}} \mathfrak{s l}_{2}$-invariant representation of $2 \mathrm{~B}_{\delta, y_{1 / r}, Y, N}$?

Can we find a $U_{q^{\prime}} \mathfrak{s l}_{2}$-invariant representation of $2 \mathrm{~B}_{\delta, y_{1 / r}, Y, N}$?
Problem : the e_{i} already generate the full centraliser of $U_{\mathfrak{q}} \mathfrak{s l}_{2}$.

Can we find a $U_{q} \mathfrak{s l}_{2}$-invariant representation of $2 \mathrm{~B}_{\delta, y_{1 / r}, Y, N}$?
Problem : the e_{i} already generate the full centraliser of $U_{\mathfrak{q}} \mathfrak{S l}_{2}$.

Strategy

Can we find a $U_{q} \mathfrak{s l}_{2}$-invariant representation of $2 \mathrm{~B}_{\delta, y_{1 / r}, Y, N}$?
Problem : the e_{i} already generate the full centraliser of $U_{\mathfrak{q}} \mathfrak{S l}_{2}$.

Strategy

- Take irreps $\mathcal{X}_{1 / r}$ of $U_{\mathfrak{q}} \mathfrak{S l}_{2}$ and consider the bigger Hilbert space $\mathcal{X}_{l} \otimes\left(\mathbb{C}^{2}\right)^{\otimes N} \otimes \mathcal{X}_{r}$.

Can we find a $U_{q^{\prime}} \mathfrak{s l}_{2}$-invariant representation of $2 \mathrm{~B}_{\delta, y_{1 / r}, Y, N}$?
Problem : the e_{i} already generate the full centraliser of $U_{\mathfrak{q}} \mathfrak{S l}_{2}$.

Strategy

- Take irreps $\mathcal{X}_{1 / r}$ of $U_{\mathfrak{q}} \mathfrak{s l}_{2}$ and consider the bigger Hilbert space $\mathcal{X}_{1} \otimes\left(\mathbb{C}^{2}\right)^{\otimes N} \otimes \mathcal{X}_{r}$.
- Look for some $U_{\mathfrak{q}} \mathfrak{s l}_{2}$-invariant operators $b_{1 / r}$ acting only on the two leftmost/rightmost sites and satisfying the relations of $2 \mathrm{~B}_{\delta, y_{/ / r}, Y, N}$.

Can we find a $U_{q} \mathfrak{s l}_{2}$-invariant representation of $2 \mathrm{~B}_{\delta, y_{1 / r}, Y, N}$?
Problem : the e_{i} already generate the full centraliser of $U_{\mathfrak{q}} \mathfrak{S l}_{2}$.

Strategy

- Take irreps $\mathcal{X}_{1 / r}$ of $U_{\mathfrak{q}} \mathfrak{s l}_{2}$ and consider the bigger Hilbert space $\mathcal{X}_{I} \otimes\left(\mathbb{C}^{2}\right)^{\otimes N} \otimes \mathcal{X}_{r}$.
- Look for some $U_{\mathfrak{q}} \mathfrak{s l}_{2}$-invariant operators $b_{1 / r}$ acting only on the two leftmost/rightmost sites and satisfying the relations of $2 \mathrm{~B}_{\delta, y_{/ / r}, Y, N}$.

For $\mathcal{X}_{I / r}$ we will take infinite-dimensional Verma modules of $U_{\mathfrak{q}} \mathfrak{s l}_{2}$.

Can we find a $U_{\mathfrak{q} \mathfrak{s l}_{2} \text {-invariant representation of } 2 \mathrm{~B}_{\delta, y_{1 / r}, Y, N} \text { ? }}^{\underline{\text { ? }}}$

Strategy

- Take irreps $\mathcal{X}_{1 / r}$ of $U_{\mathfrak{q}} \mathfrak{s l}_{2}$ and consider the bigger Hilbert space $\mathcal{X}_{I} \otimes\left(\mathbb{C}^{2}\right)^{\otimes N} \otimes \mathcal{X}_{r}$.
- Look for some $U_{\mathfrak{q}} \mathfrak{s l}_{2}$-invariant operators $b_{1 / r}$ acting only on the two leftmost/rightmost sites and satisfying the relations of $2 \mathrm{~B}_{\delta, y_{/ / r}, Y, N}$.

For $\mathcal{X}_{I / r}$ we will take infinite-dimensional Verma modules of $U_{\mathfrak{q}} \mathfrak{s l}_{2}$.

Definition

Take $\alpha \in \mathbb{C}$ and set $\mathcal{V}_{\alpha}:=\bigoplus_{0 \leq n} \mathbb{C}|n\rangle$. Then $U_{q} \mathfrak{s l}_{2}$ acts on \mathcal{V}_{α} as

$$
\begin{array}{ll}
\mathrm{E}_{\mathcal{V}_{\alpha}}|n\rangle=[n]_{\mathfrak{q}}[\alpha-n]_{\mathfrak{q}}|n-1\rangle, \\
\mathrm{F}_{\mathcal{V}_{\alpha}}|n\rangle=|n+1\rangle, & {[x]_{\mathfrak{q}}:=\frac{\mathfrak{q}^{x}-\mathfrak{q}^{-x}}{\mathfrak{q}-\mathfrak{q}^{-1}}} \\
\mathrm{~K}_{\mathcal{V}_{\alpha}}^{ \pm 1}|n\rangle=\mathfrak{q}^{ \pm(\alpha-1-2 n)}|n\rangle
\end{array}
$$

One can show that we have the $U_{\mathfrak{q}} \mathfrak{s l}_{2}$ irrep decomposition

$$
\mathcal{V}_{\alpha} \otimes \mathbb{C}^{2}=\mathcal{V}_{\alpha+1} \oplus \mathcal{V}_{\alpha-1}
$$

One can show that we have the $U_{\mathfrak{q}} \mathfrak{s l}_{2}$ irrep decomposition

$$
\mathcal{V}_{\alpha} \otimes \mathbb{C}^{2}=\mathcal{V}_{\alpha+1} \oplus \mathcal{V}_{\alpha-1}
$$

- Consider the Hilbert space $\mathcal{V}_{\alpha_{l}} \otimes\left(\mathbb{C}^{2}\right)^{\otimes N} \otimes \mathcal{V}_{\alpha_{r}}$.

One can show that we have the $U_{\mathfrak{q}} \mathfrak{s l}_{2}$ irrep decomposition

$$
\mathcal{V}_{\alpha} \otimes \mathbb{C}^{2}=\mathcal{V}_{\alpha+1} \oplus \mathcal{V}_{\alpha-1}
$$

- Consider the Hilbert space $\mathcal{V}_{\alpha_{l}} \otimes\left(\mathbb{C}^{2}\right)^{\otimes N} \otimes \mathcal{V}_{\alpha_{r}}$.
- Take b_{l} the projector on $\mathcal{V}_{\alpha_{l}+1}$ acting on $\mathcal{V}_{\alpha_{l}} \otimes \mathbb{C}^{2}$

One can show that we have the $U_{\mathfrak{q}} \mathfrak{s l}_{2}$ irrep decomposition

$$
\mathcal{V}_{\alpha} \otimes \mathbb{C}^{2}=\mathcal{V}_{\alpha+1} \oplus \mathcal{V}_{\alpha-1}
$$

- Consider the Hilbert space $\mathcal{V}_{\alpha_{l}} \otimes\left(\mathbb{C}^{2}\right)^{\otimes N} \otimes \mathcal{V}_{\alpha_{r}}$.
- Take b_{l} the projector on $\mathcal{V}_{\alpha_{l}+1}$ acting on $\mathcal{V}_{\alpha_{l}} \otimes \mathbb{C}^{2}$
- Take b_{r} the projector on $\mathcal{V}_{\alpha_{r}+1}$ acting on $\mathbb{C}^{2} \otimes \mathcal{V}_{\alpha_{r}}$.

One can show that we have the $U_{\mathfrak{q}} \mathfrak{s l}_{2}$ irrep decomposition

$$
\mathcal{V}_{\alpha} \otimes \mathbb{C}^{2}=\mathcal{V}_{\alpha+1} \oplus \mathcal{V}_{\alpha-1}
$$

- Consider the Hilbert space $\mathcal{V}_{\alpha_{l}} \otimes\left(\mathbb{C}^{2}\right)^{\otimes N} \otimes \mathcal{V}_{\alpha_{r}}$.
- Take b_{l} the projector on $\mathcal{V}_{\alpha_{l}+1}$ acting on $\mathcal{V}_{\alpha_{l}} \otimes \mathbb{C}^{2}$
- Take b_{r} the projector on $\mathcal{V}_{\alpha_{r}+1}$ acting on $\mathbb{C}^{2} \otimes \mathcal{V}_{\alpha_{r}}$.

Then

$$
\begin{gathered}
b_{l}^{2}=b_{l}, \quad e_{1} b_{l} e_{1}=y_{l} e_{1}, \quad\left[b_{l}, e_{i}\right]=0 \quad \text { for } \quad 2 \leq i \leq N-1 \\
b_{r}^{2}=b_{r}, \quad e_{N-1} b_{r} e_{N-1}=y_{r} e_{N-1}, \quad\left[b_{r}, e_{i}\right]=0 \quad \text { for } \quad 1 \leq i \leq N-2
\end{gathered}
$$

with

$$
y_{l / r}=\frac{\left[\alpha_{I / r}+1\right]_{\mathfrak{q}}}{\left[\alpha_{I / r}\right]_{\mathfrak{q}}} .
$$

What about the weight Y ?

What about the weight Y ?
It turns out Y is not a number but a central element of $U_{\mathfrak{q}} \mathfrak{s l}_{2}$!

What about the weight Y ?
It turns out Y is not a number but a central element of $U_{\mathfrak{q}} \mathfrak{s l}_{2}$!
$U_{\mathfrak{q}^{\prime}}$ l $_{2}$ admits a central Casimir element

$$
C:=\left(\mathfrak{q}-\mathfrak{q}^{-1}\right)^{2} F E+\mathfrak{q K}+\mathfrak{q}^{-1} \mathrm{~K}^{-1} .
$$

What about the weight Y ?
It turns out Y is not a number but a central element of $U_{\mathfrak{q}} \mathfrak{s l}_{2}$!
$U_{\mathfrak{q}^{\prime}}$ l $_{2}$ admits a central Casimir element

$$
C:=\left(\mathfrak{q}-\mathfrak{q}^{-1}\right)^{2} F E+\mathfrak{q K}+\mathfrak{q}^{-1} K^{-1} .
$$

- Evaluated on our spin chain $\mathcal{V}_{\alpha_{l}} \otimes\left(\mathbb{C}^{2}\right)^{\otimes N} \otimes \mathcal{V}_{\alpha_{r}}$ it commutes with the $U_{\mathfrak{q}} \mathfrak{s l}_{2}$ action and also the e_{i}, b_{l} and b_{r}.

What about the weight Y ?
It turns out Y is not a number but a central element of $U_{\mathfrak{q}} \mathfrak{s l}_{2}$!
$U_{\mathfrak{q}^{\prime}} \mathfrak{I l}_{2}$ admits a central Casimir element

$$
C:=\left(\mathfrak{q}-\mathfrak{q}^{-1}\right)^{2} F E+\mathfrak{q K}+\mathfrak{q}^{-1} K^{-1} .
$$

- Evaluated on our spin chain $\mathcal{V}_{\alpha_{l}} \otimes\left(\mathbb{C}^{2}\right)^{\otimes N} \otimes \mathcal{V}_{\alpha_{r}}$ it commutes with the $U_{\mathfrak{q}} \mathfrak{s l}_{2}$ action and also the e_{i}, b_{l} and b_{r}.
- With

$$
Y=\frac{\mathfrak{q}^{\alpha_{l}+\alpha_{r}+1}+\mathfrak{q}^{-\alpha_{l}-\alpha_{r}-1}-\mathbb{C}}{\left(\mathfrak{q}^{\alpha_{l}}-\mathfrak{q}^{-\alpha_{l}}\right)\left(\mathfrak{q}^{\alpha_{r}}-\mathfrak{q}^{-\alpha_{r}}\right)}
$$

e_{i}, b_{l} and b_{r} define a representation of the (universal) two-boundary Temperley-Lieb algebra.

What values can Y take?

What values can Y take?

The Casimir C is constant on any irrep of $U_{\mathfrak{q}} \mathfrak{s l}_{2}$.

What values can Y take?

The Casimir C is constant on any irrep of $U_{\mathfrak{q}} \mathfrak{s l}_{2}$. We just need to compute the decomposition of $\mathcal{V}_{\alpha_{l}} \otimes\left(\mathbb{C}^{2}\right)^{\otimes N} \otimes \mathcal{V}_{\alpha_{r}}$ into $U_{\mathfrak{q}} \mathfrak{s l}_{2}$-irreps !

What values can Y take?

The Casimir C is constant on any irrep of $U_{\mathfrak{q}} \mathfrak{s l}_{2}$. We just need to compute the decomposition of $\mathcal{V}_{\alpha_{l}} \otimes\left(\mathbb{C}^{2}\right)^{\otimes N} \otimes \mathcal{V}_{\alpha_{r}}$ into $U_{\mathfrak{q}} \mathfrak{s l}_{2}$-irreps !

Using the fusion rules

$$
\mathcal{V}_{\alpha} \otimes \mathcal{V}_{\beta}=\bigoplus \mathcal{V}_{\alpha+\beta-1-2 n} \quad \text { and } \quad \mathcal{V}_{\alpha} \otimes \mathbb{C}^{2}=\mathcal{V}_{\alpha+1} \oplus \mathcal{V}_{\alpha-1}
$$

What values can Y take?

The Casimir C is constant on any irrep of $U_{\mathfrak{g} \mathfrak{s l}_{2}}$. We just need to compute the decomposition of $\mathcal{V}_{\alpha_{l}} \otimes\left(\mathbb{C}^{2}\right)^{\otimes N} \otimes \mathcal{V}_{\alpha_{r}}$ into $U_{\mathfrak{q}} \mathfrak{s l}_{2}$-irreps !

Using the fusion rules

$$
\mathcal{V}_{\alpha} \otimes \mathcal{V}_{\beta}=\bigoplus \mathcal{V}_{\alpha+\beta-1-2 n} \quad \text { and } \quad \mathcal{V}_{\alpha} \otimes \mathbb{C}^{2}=\mathcal{V}_{\alpha+1} \oplus \mathcal{V}_{\alpha-1}
$$

we obtain

$$
\mathcal{V}_{\alpha_{l}} \otimes\left(\mathbb{C}^{2}\right)^{\otimes N} \otimes \mathcal{V}_{\alpha_{r}}=\bigoplus_{M \geq 0} \mathcal{V}_{\alpha_{l}+\alpha_{r}-1+N-2 M} \otimes \mathcal{Z}_{M}
$$

where the \mathcal{Z}_{M} are some multiplicity spaces of dimension

$$
d_{M}:=\operatorname{dim} \mathcal{Z}_{M}=\left\{\begin{array}{cll}
\sum_{k=0}^{M}\binom{N}{k} & \text { for } & 0 \leq M \leq N \\
2^{N} & \text { for } & M \geq N
\end{array}\right.
$$

Since $\mathcal{C}_{\mathcal{V}_{\alpha}}=\mathfrak{q}^{\alpha}+\mathfrak{q}^{-\alpha}$,

$$
Y_{\mathcal{Z}_{M}}=\frac{\left[M+1-\frac{N}{2}\right]_{\mathfrak{q}}\left[\alpha_{l}+\alpha_{r}-M+\frac{N}{2}\right]_{\mathfrak{q}}}{\left[\alpha_{l}\right]_{\mathfrak{q}}\left[\alpha_{r}\right]_{\mathfrak{q}}}:=Y_{M} .
$$

Since $\mathcal{C}_{\mathcal{V}_{\alpha}}=\mathfrak{q}^{\alpha}+\mathfrak{q}^{-\alpha}$,

$$
Y_{\mathcal{Z}_{M}}=\frac{\left[M+1-\frac{N}{2}\right]_{\mathfrak{q}}\left[\alpha_{l}+\alpha_{r}-M+\frac{N}{2}\right]_{\mathfrak{q}}}{\left[\alpha_{l}\right]_{\mathfrak{q}}\left[\alpha_{r}\right]_{\mathfrak{q}}}:=Y_{M} .
$$

Therefore \mathcal{Z}_{M} is a representation of $2 \mathrm{~B}_{\delta, y_{/ /}, Y_{M}, N}$ for all $M \geq 0$!

Since $\mathcal{C}_{\mathcal{V}_{\alpha}}=\mathfrak{q}^{\alpha}+\mathfrak{q}^{-\alpha}$,

$$
Y_{\mathcal{Z}_{M}}=\frac{\left[M+1-\frac{N}{2}\right]_{\mathfrak{q}}\left[\alpha_{l}+\alpha_{r}-M+\frac{N}{2}\right]_{\mathfrak{q}}}{\left[\alpha_{l}\right]_{\mathfrak{q}}\left[\alpha_{r}\right]_{\mathfrak{q}}}:=Y_{M} .
$$

Therefore \mathcal{Z}_{M} is a representation of $2 \mathrm{~B}_{\delta, y_{/ /}, Y_{M}, N}$ for all $M \geq 0$!
More precisely

Theorem (D.C., J.L. Jacobsen, A.M. Gainutdinov, H. Saleur '22)

Denote \mathcal{W}_{M} the 2^{N} dimensional vacuum module of $2 \mathrm{~B}_{\delta, y_{/ / r}, Y_{M}, N}$.

Since $\mathcal{C}_{\mathcal{V}_{\alpha}}=\mathfrak{q}^{\alpha}+\mathfrak{q}^{-\alpha}$,

$$
Y_{\mathcal{Z}_{M}}=\frac{\left[M+1-\frac{N}{2}\right]_{\mathfrak{q}}\left[\alpha_{l}+\alpha_{r}-M+\frac{N}{2}\right]_{\mathfrak{q}}}{\left[\alpha_{l}\right]_{\mathfrak{q}}\left[\alpha_{r}\right]_{\mathfrak{q}}}:=Y_{M} .
$$

Therefore \mathcal{Z}_{M} is a representation of $2 \mathrm{~B}_{\delta, y_{/ /}, Y_{M}, N}$ for all $M \geq 0$!
More precisely

Theorem (D.C., J.L. Jacobsen, A.M. Gainutdinov, H. Saleur '22)

Denote \mathcal{W}_{M} the 2^{N} dimensional vacuum module of $2 \mathrm{~B}_{\delta, y_{/ / r}, Y_{M}, N}$. Then
i) For $0 \leq M \leq N-1, \mathcal{Z}_{M}$ is isomorphic to an irreducible d_{M}-dimensional sub-block of \mathcal{W}_{M},

Since $\mathcal{C}_{\mathcal{V}_{\alpha}}=\mathfrak{q}^{\alpha}+\mathfrak{q}^{-\alpha}$,

$$
Y_{\mathcal{Z}_{M}}=\frac{\left[M+1-\frac{N}{2}\right]_{\mathfrak{q}}\left[\alpha_{l}+\alpha_{r}-M+\frac{N}{2}\right]_{\mathfrak{q}}}{\left[\alpha_{l}\right]_{\mathfrak{q}}\left[\alpha_{r}\right]_{\mathfrak{q}}}:=Y_{M} .
$$

Therefore \mathcal{Z}_{M} is a representation of $2 \mathrm{~B}_{\delta, y_{/ /}, Y_{M}, N}$ for all $M \geq 0$!
More precisely

Theorem (D.C., J.L. Jacobsen, A.M. Gainutdinov, H. Saleur '22)

Denote \mathcal{W}_{M} the 2^{N} dimensional vacuum module of $2 \mathrm{~B}_{\delta, y_{/ / r}, Y_{M}, N}$. Then
i) For $0 \leq M \leq N-1, \mathcal{Z}_{M}$ is isomorphic to an irreducible d_{M}-dimensional sub-block of \mathcal{W}_{M},
ii) For $M \geq N, \mathcal{Z}_{M} \cong \mathcal{W}_{M}$ and is irreducible.

Corollary

Define

$$
H_{2 b}:=-\mu_{l} b_{l}-\mu_{r} b_{r}-\sum_{i=1}^{N-1} e_{i}
$$

acting on $\mathcal{V}_{\alpha_{l}} \otimes\left(\mathbb{C}^{2}\right)^{\otimes N} \otimes \mathcal{V}_{\alpha_{r}}$ and denote $H_{\text {n.d. }}^{(M)}:=H_{\text {n.d. }}\left(Y=Y_{M}\right)$.

Corollary

Define

$$
H_{2 b}:=-\mu_{l} b_{l}-\mu_{r} b_{r}-\sum_{i=1}^{N-1} e_{i}
$$

acting on $\mathcal{V}_{\alpha_{l}} \otimes\left(\mathbb{C}^{2}\right)^{\otimes N} \otimes \mathcal{V}_{\alpha_{r}}$ and denote $H_{\text {n.d. }}^{(M)}:=H_{\text {n.d. }}\left(Y=Y_{M}\right)$. Then
i) For $0 \leq M \leq N-1, H_{2 b} \mid \mathcal{Z}_{M}$ is equal to a d_{M}-dimensional sub-block of $\mathbf{H}_{\mathcal{W}_{M}}=H_{\text {n.d. }}^{(M)}$,

Corollary

Define

$$
H_{2 b}:=-\mu_{l} b_{l}-\mu_{r} b_{r}-\sum_{i=1}^{N-1} e_{i}
$$

acting on $\mathcal{V}_{\alpha_{l}} \otimes\left(\mathbb{C}^{2}\right)^{\otimes N} \otimes \mathcal{V}_{\alpha_{r}}$ and denote $H_{\text {n.d. }}^{(M)}:=H_{\text {n.d. }}\left(Y=Y_{M}\right)$. Then
i) For $0 \leq M \leq N-1, H_{2 b} \mid \mathcal{Z}_{M}$ is equal to a d_{M}-dimensional sub-block of $\mathbf{H}_{\mathcal{W}_{M}}=H_{\text {n.d. }}^{(M)}$,
ii) For $M \geq N, H_{2 b} \mid \mathcal{Z}_{M}=\mathbf{H}_{\mathcal{W}_{M}}=H_{\text {n.d. }}^{(M)}$.

Corollary

Define

$$
H_{2 b}:=-\mu_{l} b_{l}-\mu_{r} b_{r}-\sum_{i=1}^{N-1} e_{i}
$$

acting on $\mathcal{V}_{\alpha_{l}} \otimes\left(\mathbb{C}^{2}\right)^{\otimes N} \otimes \mathcal{V}_{\alpha_{r}}$ and denote $H_{\text {n.d. }}^{(M)}:=H_{\text {n.d. }}\left(Y=Y_{M}\right)$. Then
i) For $0 \leq M \leq N-1, H_{2 b} \mid \mathcal{Z}_{M}$ is equal to a d_{M}-dimensional sub-block of $\mathbf{H}_{\mathcal{W}_{M}}=H_{\mathrm{n} \text {.d. }}^{(M)}$,
ii) For $M \geq N, H_{2 b} \mid \mathcal{Z}_{M}=\mathbf{H}_{\mathcal{W}_{M}}=H_{\text {n.d. }}^{(M)}$.

Consequences

- Diagonalising $H_{\text {n.d. }}^{(M)}$ for all $M \geq N$ is equivalent to diagonalising $H_{2 b}$.

Corollary

Define

$$
H_{2 b}:=-\mu_{l} b_{l}-\mu_{r} b_{r}-\sum_{i=1}^{N-1} e_{i}
$$

acting on $\mathcal{V}_{\alpha_{l}} \otimes\left(\mathbb{C}^{2}\right)^{\otimes N} \otimes \mathcal{V}_{\alpha_{r}}$ and denote $H_{\text {n.d. }}^{(M)}:=H_{\text {n.d. }}\left(Y=Y_{M}\right)$. Then
i) For $0 \leq M \leq N-1, H_{2 b} \mid \mathcal{Z}_{M}$ is equal to a d_{M}-dimensional sub-block of $\mathbf{H}_{\mathcal{W}_{M}}=H_{\mathrm{n} \text {.d. }}^{(M)}$
ii) For $M \geq N, H_{2 b} \mid \mathcal{Z}_{M}=\mathbf{H}_{\mathcal{W}_{M}}=H_{\text {n.d. }}^{(M)}$.

Consequences

- Diagonalising $H_{\text {n.d. }}^{(M)}$ for all $M \geq N$ is equivalent to diagonalising $H_{2 b}$.
- We can arbitrarily fix the parameters $\delta, y_{1 / r}$ and $\mu_{1 / r}$ but $Y \in\left\{Y_{M}, M \geq 0\right\}$, and is fixed by the sector \mathcal{Z}_{M} of $H_{2 b}$.

Corollary

Define

$$
H_{2 b}:=-\mu_{l} b_{l}-\mu_{r} b_{r}-\sum_{i=1}^{N-1} e_{i}
$$

acting on $\mathcal{V}_{\alpha_{l}} \otimes\left(\mathbb{C}^{2}\right)^{\otimes N} \otimes \mathcal{V}_{\alpha_{r}}$ and denote $H_{\text {n.d. }}^{(M)}:=H_{\text {n.d. }}\left(Y=Y_{M}\right)$. Then
i) For $0 \leq M \leq N-1, H_{2 b} \mid \mathcal{Z}_{M}$ is equal to a d_{M}-dimensional sub-block of $\mathbf{H}_{\mathcal{W}_{M}}=H_{\text {n.d. }}^{(M)}$,
ii) For $M \geq N, H_{2 b} \mid \mathcal{Z}_{M}=\mathbf{H}_{\mathcal{W}_{M}}=H_{\text {n.d. }}^{(M)}$.

Consequences

- Diagonalising $H_{\text {n.d. }}^{(M)}$ for all $M \geq N$ is equivalent to diagonalising $H_{2 b}$.
- We can arbitrarily fix the parameters $\delta, y_{1 / r}$ and $\mu_{1 / r}$ but $Y \in\left\{Y_{M}, M \geq 0\right\}$, and is fixed by the sector \mathcal{Z}_{M} of $H_{2 b}$.
- The "quantization condition" on Y is precisely the Nepomechie condition.

Corollary

Define

$$
H_{2 b}:=-\mu_{l} b_{l}-\mu_{r} b_{r}-\sum_{i=1}^{N-1} e_{i}
$$

acting on $\mathcal{V}_{\alpha_{l}} \otimes\left(\mathbb{C}^{2}\right)^{\otimes N} \otimes \mathcal{V}_{\alpha_{r}}$ and denote $H_{\text {n.d. }}^{(M)}:=H_{\text {n.d. }}\left(Y=Y_{M}\right)$. Then
i) For $0 \leq M \leq N-1, H_{2 b} \mid \mathcal{Z}_{M}$ is equal to a d_{M}-dimensional sub-block of $\mathbf{H}_{\mathcal{W}_{M}}=H_{\text {n.d. }}^{(M)}$,
ii) For $M \geq N, H_{2 b} \mid \mathcal{Z}_{M}=\mathbf{H}_{\mathcal{W}_{M}}=H_{\text {n.d. }}^{(M)}$.

Consequences

- Diagonalising $H_{\text {n.d. }}^{(M)}$ for all $M \geq N$ is equivalent to diagonalising $H_{2 b}$.
- We can arbitrarily fix the parameters $\delta, y_{I / r}$ and $\mu_{I / r}$ but $Y \in\left\{Y_{M}, M \geq 0\right\}$, and is fixed by the sector \mathcal{Z}_{M} of $H_{2 b}$.
- The "quantization condition" on Y is precisely the Nepomechie condition.
- We have shown that it originates from $U_{\mathfrak{q}} \mathfrak{s l}_{2}$-fusion rules.

(1) Loop models and lattice algebras

(2) $U_{q} \mathfrak{S l}_{2}$-invariant realisation
(3) Bethe ansatz

To implement boundary Algebraic Bethe Ansatz we need :

To implement boundary Algebraic Bethe Ansatz we need :

- A solution of the Yang-Baxter equation $R(u)$ (a.k.a R-matrix),

To implement boundary Algebraic Bethe Ansatz we need :

- A solution of the Yang-Baxter equation $R(u)$ (a.k.a R-matrix),
- A solution of the boundary Yang-Baxter equation $K(u)$ (a.k.a K-matrix),

To implement boundary Algebraic Bethe Ansatz we need :

- A solution of the Yang-Baxter equation $R(u)$ (a.k.a R-matrix),
- A solution of the boundary Yang-Baxter equation $K(u)$ (a.k.a K-matrix),
- A reference state.

To implement boundary Algebraic Bethe Ansatz we need :

- A solution of the Yang-Baxter equation $R(u)$ (a.k.a R-matrix),
- A solution of the boundary Yang-Baxter equation $K(u)$ (a.k.a K-matrix),
- A reference state.

All these ingredients are available for $H_{2 b}$ thanks to the $U_{\mathfrak{q}} \mathfrak{S l}_{2}$ symmetry !

To implement boundary Algebraic Bethe Ansatz we need :

- A solution of the Yang-Baxter equation $R(u)$ (a.k.a R-matrix),
- A solution of the boundary Yang-Baxter equation $K(u)$ (a.k.a K-matrix),
- A reference state.

All these ingredients are available for $H_{2 b}$ thanks to the $U_{\mathfrak{q} \mathfrak{S l}_{2}}$ symmetry !

- $R(u)$ is constructed from the R-matrix of $U_{\mathfrak{q}} \mathfrak{S l}_{2}$.

To implement boundary Algebraic Bethe Ansatz we need :

- A solution of the Yang-Baxter equation $R(u)$ (a.k.a R-matrix),
- A solution of the boundary Yang-Baxter equation $K(u)$ (a.k.a K-matrix),
- A reference state.

All these ingredients are available for $H_{2 b}$ thanks to the $U_{\mathfrak{q}} \mathfrak{S l}_{2}$ symmetry !

- $R(u)$ is constructed from the R-matrix of $U_{\mathfrak{q}} \mathfrak{s l}_{2}$.
- No need for a K-matrix: just use the affine R-matrix in Verma representation!

To implement boundary Algebraic Bethe Ansatz we need :

- A solution of the Yang-Baxter equation $R(u)$ (a.k.a R-matrix),
- A solution of the boundary Yang-Baxter equation $K(u)$ (a.k.a K-matrix),
- A reference state.

All these ingredients are available for $H_{2 b}$ thanks to the $U_{\mathfrak{q}} \mathfrak{S l}_{2}$ symmetry !

- $R(u)$ is constructed from the R-matrix of $U_{\mathfrak{q}} \mathfrak{s l}_{2}$.
- No need for a K-matrix: just use the affine R-matrix in Verma representation!
- The reference state is just the highest-weight vector $|\Uparrow\rangle:=|0\rangle \otimes|\uparrow\rangle^{\otimes N} \otimes|0\rangle$.
$U_{\mathfrak{q}} \mathfrak{S l}_{2}$ admits a universal R-matrix

$$
\mathrm{R}=\mathfrak{q}^{\frac{\mathrm{H} \otimes H}{2}} \sum_{k \geq 0} \frac{\left(\mathfrak{q}-\mathfrak{q}^{-1}\right)^{2 k}}{\prod_{n=1}^{k}\left(\mathfrak{q}^{n}-\mathfrak{q}^{-n}\right)} \mathfrak{q}^{k(k-1) / 2} \mathrm{E}^{k} \otimes \mathrm{~F}^{k}
$$

$U_{q} \mathfrak{S l}_{2}$ admits a universal R-matrix

$$
\mathrm{R}=\mathfrak{q}^{\frac{\mathrm{H} \otimes H}{2}} \sum_{k \geq 0} \frac{\left(\mathfrak{q}-\mathfrak{q}^{-1}\right)^{2 k}}{\prod_{n=1}^{k}\left(\mathfrak{q}^{n}-\mathfrak{q}^{-n}\right)} \mathfrak{q}^{k(k-1) / 2} \mathrm{E}^{k} \otimes \mathrm{~F}^{k}
$$

For two representations \mathcal{X} and \mathcal{Y}, the operators

$$
\begin{aligned}
& P_{\mathcal{X}, \mathcal{Y}} \circ \mathrm{R}_{\mathcal{X}, \mathcal{Y}}: \mathcal{X} \otimes \mathcal{Y} \quad \rightarrow \mathcal{Y} \otimes \mathcal{X} \\
& \mathrm{R}_{\mathcal{Y}, \mathcal{X}}^{-1} \circ P_{\mathcal{X}, \mathcal{Y}}: \mathcal{X} \otimes \mathcal{Y} \quad \rightarrow \mathcal{Y} \otimes \mathcal{X}
\end{aligned}
$$

where

$$
\begin{aligned}
P_{\mathcal{X}, \mathcal{Y}}: \mathcal{X} \otimes \mathcal{Y} & \rightarrow \mathcal{Y} \otimes \mathcal{X} \\
x \otimes y & \mapsto y \otimes x
\end{aligned}
$$

are $U_{\mathfrak{G}^{\prime}} \mathfrak{I l}_{2}$-intertwiners.

Introduce, for any representation \mathcal{X} of $U_{\mathfrak{q}} \mathfrak{s l}_{2}$,

$$
\begin{aligned}
& R_{\mathcal{X}, \mathbb{C}^{2}}(u):=e^{u} \mathrm{R}_{\mathcal{X}, \mathbb{C}^{2}}-e^{-u} P_{\mathbb{C}^{2}, \mathcal{X}} \circ \mathrm{R}_{\mathbb{C}^{2}, \mathcal{X}}^{-1} \circ P_{\mathcal{X}, \mathbb{C}^{2}}, \\
& R_{\mathbb{C}^{2}, \mathcal{X}}(u):=e^{u} \mathrm{R}_{\mathbb{C}^{2}, \mathcal{X}}-e^{-u} P_{\mathcal{X}, \mathbb{C}^{2}} \circ \mathrm{R}_{\mathcal{X}, \mathbb{C}^{2}}^{-1} \circ P_{\mathbb{C}^{2}, \mathcal{X}} .
\end{aligned}
$$

Introduce, for any representation \mathcal{X} of $U_{\mathfrak{q}} \mathfrak{s l}_{2}$,

$$
\begin{aligned}
& R_{\mathcal{X}, \mathbb{C}^{2}}(u):=e^{u} \mathrm{R}_{\mathcal{X}, \mathbb{C}^{2}}-e^{-u} P_{\mathbb{C}^{2}, \mathcal{X}} \circ \mathrm{R}_{\mathbb{C}^{2}, \mathcal{X}}^{-1} \circ P_{\mathcal{X}, \mathbb{C}^{2}}, \\
& R_{\mathbb{C}^{2}, \mathcal{X}}(u):=e^{u} \mathrm{R}_{\mathbb{C}^{2}, \mathcal{X}}-e^{-u} P_{\mathcal{X}, \mathbb{C}^{2}} \circ \mathrm{R}_{\mathcal{X}, \mathbb{C}^{2}}^{-1} \circ P_{\mathbb{C}^{2}, \mathcal{X}} .
\end{aligned}
$$

Then for any three representations $\mathcal{X}_{1,2,3}$ of $U_{\mathfrak{F s}_{2}}$ with at least two of them isomorphic to \mathbb{C}^{2} the Yang-Baxter equation

$$
R_{\mathcal{X}_{1}, \mathcal{X}_{2}}(u-v) R_{\mathcal{X}_{1}, \mathcal{X}_{3}}(u) R_{\mathcal{X}_{2}, \mathcal{X}_{3}}(v)=R_{\mathcal{X}_{2}, \mathcal{X}_{3}}(v) R_{\mathcal{X}_{1}, \mathcal{X}_{3}}(u) R_{\mathcal{X}_{1}, \mathcal{X}_{2}}(u-v)
$$

is satisfied.

Introduce, for any representation \mathcal{X} of $U_{\mathfrak{q}} \mathfrak{s l}_{2}$,

$$
\begin{aligned}
& R_{\mathcal{X}, \mathbb{C}^{2}}(u):=e^{u} \mathrm{R}_{\mathcal{X}, \mathbb{C}^{2}}-e^{-u} P_{\mathbb{C}^{2}, \mathcal{X}} \circ \mathrm{R}_{\mathbb{C}^{2}, \mathcal{X}}^{-1} \circ P_{\mathcal{X}, \mathbb{C}^{2}}, \\
& R_{\mathbb{C}^{2}, \mathcal{X}}(u):=e^{u} \mathrm{R}_{\mathbb{C}^{2}, \mathcal{X}}-e^{-u} P_{\mathcal{X}, \mathbb{C}^{2}} \circ \mathrm{R}_{\mathcal{X}, \mathbb{C}^{2}}^{-1} \circ P_{\mathbb{C}^{2}, \mathcal{X}} .
\end{aligned}
$$

Then for any three representations $\mathcal{X}_{1,2,3}$ of $U_{\mathfrak{q} \mathfrak{s l}_{2}}$ with at least two of them isomorphic to \mathbb{C}^{2} the Yang-Baxter equation

$$
R_{\mathcal{X}_{1}, \mathcal{X}_{2}}(u-v) R_{\mathcal{X}_{1}, \mathcal{X}_{3}}(u) R_{\mathcal{X}_{2}, \mathcal{X}_{3}}(v)=R_{\mathcal{X}_{2}, \mathcal{X}_{3}}(v) R_{\mathcal{X}_{1}, \mathcal{X}_{3}}(u) R_{\mathcal{X}_{1}, \mathcal{X}_{2}}(u-v)
$$

is satisfied.

This sufficient to build the monodromy and transfer matrix !

Define the monodromy

$$
\begin{gathered}
\mathcal{T}(u):=T(u) \hat{T}(u)=\left(\begin{array}{cc}
\mathcal{A}(u) & \mathcal{B}(u) \\
\mathcal{C}(u) & \mathcal{D}(u)
\end{array}\right), \\
T(u):=R_{0, v_{\alpha_{r}}}\left(u-\zeta_{r}\right) R_{0, N}(u) \ldots R_{0,1}(u) R_{0, \mathcal{V}_{\alpha_{1}}}\left(u-\zeta_{l}\right), \\
\hat{T}(u):=R_{\mathcal{V}_{\alpha_{l}, 0}}\left(u+\zeta_{l}\right) R_{1,0}(u) \ldots R_{N, 0}(u) R_{\mathcal{V}_{\alpha_{r}, 0}}\left(u+\zeta_{r}\right)
\end{gathered}
$$

Define the monodromy

$$
\begin{gathered}
\mathcal{T}(u):=T(u) \hat{T}(u)=\left(\begin{array}{cc}
\mathcal{A}(u) & \mathcal{B}(u) \\
\mathcal{C}(u) & \mathcal{D}(u)
\end{array}\right), \\
T(u):=R_{0, v_{\alpha_{r}}}\left(u-\zeta_{r}\right) R_{0, N}(u) \ldots R_{0,1}(u) R_{0, \nu_{\alpha_{1}}}\left(u-\zeta_{l}\right), \\
\hat{T}(u):=R_{\mathcal{V}_{\alpha_{l}, 0}}\left(u+\zeta_{l}\right) R_{1,0}(u) \ldots R_{N, 0}(u) R_{\mathcal{V}_{\alpha_{r}, 0}}\left(u+\zeta_{r}\right)
\end{gathered}
$$

and the transfer matrix

$$
t(u):=\operatorname{qtr}_{0} \mathcal{T}(u)=\mathfrak{q} \mathcal{A}(u)+\mathfrak{q}^{-1} \mathcal{D}(u) .
$$

Define the monodromy

$$
\begin{gathered}
\mathcal{T}(u):=T(u) \hat{T}(u)=\left(\begin{array}{cc}
\mathcal{A}(u) & \mathcal{B}(u) \\
\mathcal{C}(u) & \mathcal{D}(u)
\end{array}\right), \\
T(u):=R_{0, v_{\alpha_{r}}}\left(u-\zeta_{r}\right) R_{0, N}(u) \ldots R_{0,1}(u) R_{0, \nu_{\alpha_{1}}}\left(u-\zeta_{l}\right), \\
\hat{T}(u):=R_{\mathcal{V}_{\alpha_{l}, 0}}\left(u+\zeta_{I}\right) R_{1,0}(u) \ldots R_{N, 0}(u) R_{\mathcal{V}_{\alpha_{r}, 0}}\left(u+\zeta_{r}\right)
\end{gathered}
$$

and the transfer matrix

$$
t(u):=\operatorname{qtr}_{0} \mathcal{T}(u)=\mathfrak{q} \mathcal{A}(u)+\mathfrak{q}^{-1} \mathcal{D}(u) .
$$

By construction $t(u)$ is $U_{q} \mathfrak{S l}_{2}$-invariant and

$$
H_{2 b}=c_{1}+\left.c_{2} \frac{\mathrm{~d}}{\mathrm{~d} u}\right|_{u=\hbar / 2} t(u)
$$

with $\mathfrak{q}=e^{\hbar}, c_{1}, c_{2}$ some explicit constants and $\mu_{I / r}$ related to $\zeta_{1 / r}$.

Set

$$
|\psi\rangle=\mathcal{B}\left(v_{1}\right) \ldots \mathcal{B}\left(v_{M}\right)|\Uparrow\rangle
$$

and compute $t(u)|\psi\rangle$ using

Set

$$
|\psi\rangle=\mathcal{B}\left(v_{1}\right) \ldots \mathcal{B}\left(v_{M}\right)|\Uparrow\rangle
$$

and compute $t(u)|\psi\rangle$ using

- The commutators $[\mathcal{A}(u), \mathcal{B}(v)]$ and $[\mathcal{D}(u), \mathcal{B}(v)]$ given by the YBE,

Set

$$
|\psi\rangle=\mathcal{B}\left(v_{1}\right) \ldots \mathcal{B}\left(v_{M}\right)|\Uparrow\rangle
$$

and compute $t(u)|\psi\rangle$ using

- The commutators $[\mathcal{A}(u), \mathcal{B}(v)]$ and $[\mathcal{D}(u), \mathcal{B}(v)]$ given by the YBE,
- The explicit eigenvalues of $\mathcal{A}(u)$ and $\mathcal{D}(u)$ when acting on $|\Uparrow\rangle$.

Set

$$
|\psi\rangle=\mathcal{B}\left(v_{1}\right) \ldots \mathcal{B}\left(v_{M}\right)|\Uparrow\rangle
$$

and compute $t(u)|\psi\rangle$ using

- The commutators $[\mathcal{A}(u), \mathcal{B}(v)]$ and $[\mathcal{D}(u), \mathcal{B}(v)]$ given by the YBE,
- The explicit eigenvalues of $\mathcal{A}(u)$ and $\mathcal{D}(u)$ when acting on $|\Uparrow\rangle$.

Then $|\psi\rangle$ is an eigenvector of $H_{2 b}$ with eigenvalue

$$
E\left(\left\{v_{m}\right\}\right)=\sum_{m=1}^{M} \frac{\sinh ^{2}(\hbar)}{\sinh \left(v_{m}-\hbar / 2\right) \sinh \left(v_{m}+\hbar / 2\right)}
$$

Set

$$
|\psi\rangle=\mathcal{B}\left(v_{1}\right) \ldots \mathcal{B}\left(v_{M}\right)|\Uparrow\rangle
$$

and compute $t(u)|\psi\rangle$ using

- The commutators $[\mathcal{A}(u), \mathcal{B}(v)]$ and $[\mathcal{D}(u), \mathcal{B}(v)]$ given by the YBE,
- The explicit eigenvalues of $\mathcal{A}(u)$ and $\mathcal{D}(u)$ when acting on $|\Uparrow\rangle$.

Then $|\psi\rangle$ is an eigenvector of $H_{2 b}$ with eigenvalue

$$
E\left(\left\{v_{m}\right\}\right)=\sum_{m=1}^{M} \frac{\sinh ^{2}(\hbar)}{\sinh \left(v_{m}-\hbar / 2\right) \sinh \left(v_{m}+\hbar / 2\right)}
$$

iff the rapidities $\left\{v_{m}\right\}_{1 \leq m \leq M}$ satisfy the Bethe ansatz equations (BAE)

$$
\begin{gathered}
\frac{\Delta_{I}\left(v_{m}\right) \Delta_{r}\left(v_{m}\right)}{\Delta_{l}\left(-v_{m}\right) \Delta_{r}\left(-v_{m}\right)}\left(\frac{\sinh \left(v_{m}+\hbar / 2\right)}{\sinh \left(v_{m}-\hbar / 2\right)}\right)^{2 N}=\prod_{\substack{k=1 \\
k \neq m}}^{M} \frac{\sinh \left(v_{m}-v_{k}+\hbar\right) \sinh \left(v_{m}+v_{k}+\hbar\right)}{\sinh \left(v_{m}-v_{k}-\hbar\right) \sinh \left(v_{m}+v_{k}-\hbar\right)} \\
\Delta_{I / r}(u):=1-\mu_{I / r} \frac{\sinh (u-\hbar / 2) \sinh \left(u+\hbar\left(\alpha_{I / r}-1 / 2\right)\right)}{\sinh (\hbar) \sinh \left(\hbar \alpha_{I / r}\right)} \\
\propto \\
\propto \sinh \left(u+\hbar \frac{\alpha_{I / r}-1}{2}-\zeta_{I / r}\right) \sinh \left(u+\hbar \frac{\alpha_{l / r}-1}{2}+\zeta_{I / r}\right)
\end{gathered}
$$

Remarks

- These are precisely the "simpler" Bethe ansatz equations under the Nepomechie constraint.

Remarks

- These are precisely the "simpler" Bethe ansatz equations under the Nepomechie constraint.
- The magnon number $M \geq 0$ can be arbitrarily large.

Remarks

- These are precisely the "simpler" Bethe ansatz equations under the Nepomechie constraint.
- The magnon number $M \geq 0$ can be arbitrarily large.
- We expect that the BAE provide an eigenbasis of $H_{2 b} \mid \mathcal{Z}_{M}$.

Remarks

- These are precisely the "simpler" Bethe ansatz equations under the Nepomechie constraint.
- The magnon number $M \geq 0$ can be arbitrarily large.
- We expect that the BAE provide an eigenbasis of $H_{2 b} \mid \mathcal{Z}_{M}$.

What about $H_{\text {n.d. }}$?

Remarks

- These are precisely the "simpler" Bethe ansatz equations under the Nepomechie constraint.
- The magnon number $M \geq 0$ can be arbitrarily large.
- We expect that the BAE provide an eigenbasis of $H_{2 b} \mid \mathcal{Z}_{M}$.

What about $H_{\text {n.d. }}$?

- If $M \geq N, H_{\text {n.d. }}^{(M)}=H_{2 b} \mid \mathcal{Z}_{M}$ so the BAE are the same.

Remarks

- These are precisely the "simpler" Bethe ansatz equations under the Nepomechie constraint.
- The magnon number $M \geq 0$ can be arbitrarily large.
- We expect that the BAE provide an eigenbasis of $H_{2 b} \mid \mathcal{Z}_{M}$.

What about $H_{\text {n.d. }}$?

- If $M \geq N, H_{\text {n.d. }}^{(M)}=H_{2 b} \mid \mathcal{Z}_{M}$ so the BAE are the same.
- If $0 \leq M \leq N-1 H_{2 b} \mid \mathcal{Z}_{M}$ is only a subblock of $H_{\mathrm{n} \text {.d. }}^{(M)}$

Remarks

- These are precisely the "simpler" Bethe ansatz equations under the Nepomechie constraint.
- The magnon number $M \geq 0$ can be arbitrarily large.
- We expect that the BAE provide an eigenbasis of $\left.H_{2 b}\right|_{\mathcal{Z}_{M}}$.

What about $H_{\text {n.d. }}$?

- If $M \geq N, H_{\text {n.d. }}^{(M)}=\left.H_{2 b}\right|_{\mathcal{Z}_{M}}$ so the BAE are the same.
- If $0 \leq M \leq N-\left.1 H_{2 b}\right|_{\mathcal{Z}_{M}}$ is only a subblock of $H_{\text {n.d. }}^{(M)} \cdots$
- ...but one can reach the other block using the representation theory of the two-boundary TL algebra.

Remarks

- These are precisely the "simpler" Bethe ansatz equations under the Nepomechie constraint.
- The magnon number $M \geq 0$ can be arbitrarily large.
- We expect that the BAE provide an eigenbasis of $H_{2 b} \mid \mathcal{Z}_{M}$.

What about $H_{\text {n.d. }}$?

- If $M \geq N, H_{\text {n.d. }}^{(M)}=H_{2 b} \mid \mathcal{Z}_{M}$ so the BAE are the same.
- If $0 \leq M \leq N-1 H_{2 b} \mid \mathcal{Z}_{M}$ is only a subblock of $H_{\text {n.d. }}^{(M)} \cdots$
- ...but one can reach the other block using the representation theory of the two-boundary TL algebra.
- One needs to transform $\alpha_{1 / r}, \mu_{1 / r} \rightarrow-\alpha_{I / r},-\mu_{I / r}$ and $M \rightarrow N-M-1$ in the BAE.

Remarks

- These are precisely the "simpler" Bethe ansatz equations under the Nepomechie constraint.
- The magnon number $M \geq 0$ can be arbitrarily large.
- We expect that the BAE provide an eigenbasis of $H_{2 b} \mid \mathcal{Z}_{M}$.

What about $H_{\text {n.d. }}$?

- If $M \geq N, H_{\text {n.d. }}^{(M)}=H_{2 b} \mid \mathcal{Z}_{M}$ so the BAE are the same.
- If $0 \leq M \leq N-1 H_{2 b} \mid \mathcal{Z}_{M}$ is only a subblock of $H_{\text {n.d. }}^{(M)} \cdots$
- ...but one can reach the other block using the representation theory of the two-boundary TL algebra.
- One needs to transform $\alpha_{1 / r}, \mu_{1 / r} \rightarrow-\alpha_{I / r},-\mu_{I / r}$ and $M \rightarrow N-M-1$ in the BAE.
- We can even reach "negative" values of M.

Scaling limit : one-boundary case

Scaling limit : one-boundary case

- For $\left.\mathfrak{q}=e^{\frac{i \pi}{p}}, p \in\right] 1,+\infty[$ the model is critical and we expect its scaling limit to be described by a CFT.

Scaling limit : one-boundary case

- For $\left.\mathfrak{q}=e^{\frac{i \pi}{p}}, p \in\right] 1,+\infty[$ the model is critical and we expect its scaling limit to be described by a CFT.
- Using the BAE and a distribution-based method we can compute the $1 / N$ corrections to the energy levels.

Scaling limit: one-boundary case

- For $\left.\mathfrak{q}=e^{\frac{i \pi}{p}}, p \in\right] 1,+\infty[$ the model is critical and we expect its scaling limit to be described by a CFT.
- Using the BAE and a distribution-based method we can compute the $1 / N$ corrections to the energy levels.

Denote E_{j} the ground state of $\left.H_{b}\right|_{\mathcal{H}_{N / 2-j}}$.

Scaling limit: one-boundary case

- For $\left.\mathfrak{q}=e^{\frac{i \pi}{p}}, p \in\right] 1,+\infty[$ the model is critical and we expect its scaling limit to be described by a CFT.
- Using the BAE and a distribution-based method we can compute the $1 / N$ corrections to the energy levels.

Denote E_{j} the ground state of $\left.H_{b}\right|_{\mathcal{H}_{N / 2-j}}$. Then

$$
E_{j}=N e_{\mathrm{b}}+E_{\mathrm{s}}+\frac{\pi v_{\mathrm{F}}}{N}\left(-\frac{c}{24}+h_{\alpha, \alpha+2 j}\right)+o\left(1 / N^{2}\right)
$$

where

- e_{b} is the bulk energy per site,
- E_{s} is the surface energy,
- $v_{\mathrm{F}}=p \sin \frac{\pi}{p}$ is the Fermi velocity,
- $c=1-\frac{6}{p(p-1)}$ is the central charge,
- $h_{r, s}=\frac{(p r-(p-1) s)^{2}-1}{4 p(p-1)}$ are conformal weights.

By the Cardy formula these corrections provide the CFT spectrum in the continuum

$$
\lim _{N \rightarrow \infty} \operatorname{tr}_{\mathcal{H}_{N / 2-j}} q^{\frac{N}{\pi v_{F}}\left(H_{b}-N e_{b}-E_{s}\right)}=\frac{q^{-\frac{c}{24}+h_{\alpha, \alpha+2 j}}}{\prod_{n=1}^{+\infty}\left(1-q^{n}\right)} .
$$

By the Cardy formula these corrections provide the CFT spectrum in the continuum

$$
\lim _{N \rightarrow \infty} \operatorname{tr}_{\mathcal{H}_{N / 2-j}} q^{\frac{N}{\pi v_{F}}\left(H_{b}-N e_{b}-E_{s}\right)}=\frac{q^{-\frac{c}{24}+h_{\alpha, \alpha+2 j}}}{\prod_{n=1}^{+\infty}\left(1-q^{n}\right)} .
$$

Application

Loop model partition function on a cylinder of parameter $\tau=M / N$:

$$
Z_{\tau}(\delta, y)=\sum_{j \in \mathbb{Z}} \frac{\sin \frac{\pi(\alpha+1)}{p}}{\sin \frac{\pi \alpha}{p}} \frac{q^{-\frac{c}{24}+h_{\alpha, \alpha+2 j}}}{\prod_{n=1}^{+\infty}\left(1-q^{n}\right)}
$$

where $q=e^{-\tau}, \delta=2 \cos \frac{\pi}{p}$ and $y=\frac{\sin \frac{\pi(\alpha+1)}{p}}{\sin \frac{\pi \alpha}{p}}$.

By the Cardy formula these corrections provide the CFT spectrum in the continuum

$$
\lim _{N \rightarrow \infty} \operatorname{tr}_{\mathcal{H}_{N / 2-j}} q^{\frac{N}{\pi V_{F}}\left(H_{b}-N e_{b}-E_{s}\right)}=\frac{q^{-\frac{c}{24}+h_{\alpha, \alpha+2 j}}}{\prod_{n=1}^{+\infty}\left(1-q^{n}\right)} .
$$

Application

Loop model partition function on a cylinder of parameter $\tau=M / N$:

$$
Z_{\tau}(\delta, y)=\sum_{j \in \mathbb{Z}} \frac{\sin \frac{\pi(\alpha+1)}{p}}{\sin \frac{\pi \alpha}{p}} \frac{q^{-\frac{c}{24}+h_{\alpha, \alpha+2 j}}}{\prod_{n=1}^{+\infty}\left(1-q^{n}\right)}
$$

where $q=e^{-\tau}, \delta=2 \cos \frac{\pi}{p}$ and $y=\frac{\sin \frac{\pi(\alpha+1)}{p}}{\sin \frac{\pi \alpha}{p}}$.

- Does not depend on the coupling constant μ.

By the Cardy formula these corrections provide the CFT spectrum in the continuum

$$
\lim _{N \rightarrow \infty} \operatorname{tr}_{\mathcal{H}_{N / 2-j}} q^{\frac{N}{\pi V_{F}}\left(H_{b}-N e_{b}-E_{s}\right)}=\frac{q^{-\frac{c}{24}+h_{\alpha, \alpha+2 j}}}{\prod_{n=1}^{+\infty}\left(1-q^{n}\right)} .
$$

Application

Loop model partition function on a cylinder of parameter $\tau=M / N$:

$$
Z_{\tau}(\delta, y)=\sum_{j \in \mathbb{Z}} \frac{\sin \frac{\pi(\alpha+1)}{p}}{\sin \frac{\pi \alpha}{p}} \frac{q^{-\frac{c}{24}+h_{\alpha, \alpha+2 j}}}{\prod_{n=1}^{+\infty}\left(1-q^{n}\right)}
$$

where $q=e^{-\tau}, \delta=2 \cos \frac{\pi}{p}$ and $y=\frac{\sin \frac{\pi(\alpha+1)}{p}}{\sin \frac{\pi \alpha}{p}}$.

- Does not depend on the coupling constant μ.
- Related to spanning forests and (η, ξ) ghost CFT for $p=2$.

Scaling limit : two-boundary case

Scaling limit : two-boundary case

Coulomb gas/loop model prediction:

$$
\lim _{N \rightarrow \infty} \operatorname{tr} q^{\frac{N}{\pi \nu_{F}}\left(H_{\mathrm{n} . \mathrm{d} .}^{(M)}-N e_{b}-E_{s}\right)}=\sum_{j \in \mathbb{Z}} \frac{q^{-\frac{c}{24}+h_{\alpha_{M}, \alpha_{M}+2 j}}}{\prod_{n=1}^{+\infty}\left(1-q^{n}\right)}
$$

with $\alpha_{M}:=\alpha_{I}+\alpha_{r}+N / 2-1-2 M$.

Scaling limit : two-boundary case

Coulomb gas/loop model prediction:

$$
\lim _{N \rightarrow \infty} \operatorname{tr} q^{\frac{N}{\pi \nu_{F}}\left(H_{\mathrm{n} . \mathrm{d} .}^{(M)}-N e_{b}-E_{s}\right)}=\sum_{j \in \mathbb{Z}} \frac{q^{-\frac{c}{24}+h_{\alpha_{M}, \alpha_{M}+2 j}}}{\prod_{n=1}^{+\infty}\left(1-q^{n}\right)}
$$

with $\alpha_{M}:=\alpha_{I}+\alpha_{r}+N / 2-1-2 M$.

- We can recover part of this spectrum using the same methods.

Scaling limit : two-boundary case

Coulomb gas/loop model prediction:

$$
\lim _{N \rightarrow \infty} \operatorname{tr} q^{\frac{N}{\pi \nu_{F}}\left(H_{\mathrm{n} . \mathrm{d} .}^{(M)}-N e_{b}-E_{s}\right)}=\sum_{j \in \mathbb{Z}} \frac{q^{-\frac{c}{24}+h_{\alpha_{M}, \alpha_{M}+2 j}}}{\prod_{n=1}^{+\infty}\left(1-q^{n}\right)}
$$

with $\alpha_{M}:=\alpha_{I}+\alpha_{r}+N / 2-1-2 M$.

- We can recover part of this spectrum using the same methods.
- Unclear how to recover the rest.

Scaling limit : two-boundary case

Coulomb gas/loop model prediction:

$$
\lim _{N \rightarrow \infty} \operatorname{tr} q^{\frac{N}{\pi \nu_{F}}\left(H_{\mathrm{n} . \mathrm{d} .}^{(M)}-N e_{b}-E_{s}\right)}=\sum_{j \in \mathbb{Z}} \frac{q^{-\frac{c}{24}+h_{\alpha_{M}, \alpha_{M}+2 j}}}{\prod_{n=1}^{+\infty}\left(1-q^{n}\right)}
$$

with $\alpha_{M}:=\alpha_{I}+\alpha_{r}+N / 2-1-2 M$.

- We can recover part of this spectrum using the same methods.
- Unclear how to recover the rest.
- Additional symmetry in the continuum ?

Conclusion

Summary

- We started with the XXZ Hamiltonian $H_{\text {n.d. }}$ with arbitrary boundary fields $\vec{h}_{1 / r}$.

Conclusion

Summary

- We started with the XXZ Hamiltonian $H_{\text {n.d. }}$ with arbitrary boundary fields $\vec{h}_{1 / r}$.
- We reinterpreted it as an abstract element \mathbf{H} of the two-boundary TL algebra evaluated in the 2^{N}-dimensional vacuum module \mathcal{W} of $2 \mathrm{~B}_{\delta, y_{1 / r}, Y, N}$.

Conclusion

Summary

- We started with the XXZ Hamiltonian $H_{\text {n.d. }}$ with arbitrary boundary fields $\vec{h}_{1 / r}$.
- We reinterpreted it as an abstract element \mathbf{H} of the two-boundary TL algebra evaluated in the 2^{N}-dimensional vacuum module \mathcal{W} of $2 \mathrm{~B}_{\delta, y_{1 / r}, Y, N}$.
- We constructed a $U_{q} \mathfrak{s l}_{2}$-invariant Hamiltonian $H_{2 b}$ whose sectors \mathcal{Z}_{M} are the vacuum modules \mathcal{W}_{M} of $2 \mathrm{~B}_{\delta, y_{/ r}, Y_{M}, N}$.

Conclusion

Summary

- We started with the XXZ Hamiltonian $H_{\text {n.d. }}$ with arbitrary boundary fields $\vec{h}_{1 / r}$.
- We reinterpreted it as an abstract element \mathbf{H} of the two-boundary TL algebra evaluated in the 2^{N}-dimensional vacuum module \mathcal{W} of $2 \mathrm{~B}_{\delta, y_{1 / r}, Y, N}$.
- We constructed a $U_{\mathfrak{q}} \mathfrak{s l}_{2}$-invariant Hamiltonian $H_{2 b}$ whose sectors \mathcal{Z}_{M} are the vacuum modules \mathcal{W}_{M} of $2 \mathrm{~B}_{\delta, y_{/ r}, Y_{M}, N}$.
- We diagonalised $H_{2 b} \mid \mathcal{Z}_{M}$ and thus $H_{\text {n.d. }}$. by algebraic Bethe ansatz for arbitrary values of the parameters $\delta, y_{I / r}, \mu_{I / r}$ and $Y=Y_{M}$.

Conclusion

Summary

- We started with the XXZ Hamiltonian $H_{\text {n.d. }}$ with arbitrary boundary fields $\vec{h}_{1 / r}$.
- We reinterpreted it as an abstract element \mathbf{H} of the two-boundary TL algebra evaluated in the 2^{N}-dimensional vacuum module \mathcal{W} of $2 \mathrm{~B}_{\delta, y_{1 / r}, Y, N}$.
- We constructed a $U_{\mathfrak{q}} \mathfrak{s l}_{2}$-invariant Hamiltonian $H_{2 b}$ whose sectors \mathcal{Z}_{M} are the vacuum modules \mathcal{W}_{M} of $2 \mathrm{~B}_{\delta, y_{\mid / r}, Y_{M}, N}$.
- We diagonalised $H_{2 b} \mid \mathcal{Z}_{M}$ and thus $H_{\text {n.d. }}$. by algebraic Bethe ansatz for arbitrary values of the parameters $\delta, y_{1 / r}, \mu_{I / r}$ and $Y=Y_{M}$.
- We saw that the Nepomechie condition $Y \in\left\{Y_{M}, M \geq 0\right\}$ originates from $U_{\mathfrak{q}} \mathfrak{S l}_{2}$ fusion rules.

Conclusion

Summary

- We started with the XXZ Hamiltonian $H_{\text {n.d. }}$ with arbitrary boundary fields $\vec{h}_{1 / r}$.
- We reinterpreted it as an abstract element \mathbf{H} of the two-boundary TL algebra evaluated in the 2^{N}-dimensional vacuum module \mathcal{W} of $2 \mathrm{~B}_{\delta, y_{1 / r}, Y, N}$.
- We constructed a $U_{q} \mathfrak{s l}_{2}$-invariant Hamiltonian $H_{2 b}$ whose sectors \mathcal{Z}_{M} are the vacuum modules \mathcal{W}_{M} of $2 \mathrm{~B}_{\delta, y_{/ r}, Y_{M}, N}$.
- We diagonalised $H_{2 b} \mid \mathcal{Z}_{M}$ and thus $H_{\text {n.d. }}$. by algebraic Bethe ansatz for arbitrary values of the parameters $\delta, y_{1 / r}, \mu_{1 / r}$ and $Y=Y_{M}$.
- We saw that the Nepomechie condition $Y \in\left\{Y_{M}, M \geq 0\right\}$ originates from $U_{\mathfrak{q} \mathfrak{S l}_{2}}$ fusion rules.

Open questions

- A spin chain covering all values of Y.

Conclusion

Summary

- We started with the XXZ Hamiltonian $H_{\text {n.d. }}$ with arbitrary boundary fields $\vec{h}_{1 / r}$.
- We reinterpreted it as an abstract element \mathbf{H} of the two-boundary TL algebra evaluated in the 2^{N}-dimensional vacuum module \mathcal{W} of $2 \mathrm{~B}_{\delta, y_{1 / r}, Y, N}$.
- We constructed a $U_{q} \mathfrak{s l}_{2}$-invariant Hamiltonian $H_{2 b}$ whose sectors \mathcal{Z}_{M} are the vacuum modules \mathcal{W}_{M} of $2 \mathrm{~B}_{\delta, y_{/ / r}, Y_{M}, N}$.
- We diagonalised $H_{2 b} \mid \mathcal{Z}_{M}$ and thus $H_{\text {n.d. }}$. by algebraic Bethe ansatz for arbitrary values of the parameters $\delta, y_{1 / r}, \mu_{1 / r}$ and $Y=Y_{M}$.
- We saw that the Nepomechie condition $Y \in\left\{Y_{M}, M \geq 0\right\}$ originates from $U_{\mathfrak{q} \mathfrak{S l}_{2}}$ fusion rules.

Open questions

- A spin chain covering all values of Y.
- CFT scaling limit at criticality and relation to Virasoro fusion.

Conclusion

Summary

- We started with the XXZ Hamiltonian $H_{\text {n.d. }}$ with arbitrary boundary fields $\vec{h}_{1 / r}$.
- We reinterpreted it as an abstract element \mathbf{H} of the two-boundary TL algebra evaluated in the 2^{N}-dimensional vacuum module \mathcal{W} of $2 \mathrm{~B}_{\delta, y_{1 / r}, Y, N}$.
- We constructed a $U_{q} \mathfrak{s l}_{2}$-invariant Hamiltonian $H_{2 b}$ whose sectors \mathcal{Z}_{M} are the vacuum modules \mathcal{W}_{M} of $2 \mathrm{~B}_{\delta, y_{/ /}, Y_{M}, N}$.
- We diagonalised $H_{2 b} \mid \mathcal{Z}_{M}$ and thus $H_{\text {n.d. }}$. by algebraic Bethe ansatz for arbitrary values of the parameters $\delta, y_{1 / r}, \mu_{1 / r}$ and $Y=Y_{M}$.
- We saw that the Nepomechie condition $Y \in\left\{Y_{M}, M \geq 0\right\}$ originates from $U_{\mathfrak{q} \mathfrak{S l}_{2}}$ fusion rules.

Open questions

- A spin chain covering all values of Y.
- CFT scaling limit at criticality and relation to Virasoro fusion.
- QFT interpretation ?

Conclusion

Summary

- We started with the XXZ Hamiltonian $H_{\text {n.d. }}$ with arbitrary boundary fields $\vec{h}_{1 / r}$.
- We reinterpreted it as an abstract element \mathbf{H} of the two-boundary TL algebra evaluated in the 2^{N}-dimensional vacuum module \mathcal{W} of $2 \mathrm{~B}_{\delta, y_{1 / r}, Y, N}$.
- We constructed a $U_{q} \mathfrak{s l}_{2}$-invariant Hamiltonian $H_{2 b}$ whose sectors \mathcal{Z}_{M} are the vacuum modules \mathcal{W}_{M} of $2 \mathrm{~B}_{\delta, y_{/ /}, Y_{M}, N}$.
- We diagonalised $H_{2 b} \mid \mathcal{Z}_{M}$ and thus $H_{\text {n.d. }}$. by algebraic Bethe ansatz for arbitrary values of the parameters $\delta, y_{1 / r}, \mu_{1 / r}$ and $Y=Y_{M}$.
- We saw that the Nepomechie condition $Y \in\left\{Y_{M}, M \geq 0\right\}$ originates from $U_{\mathfrak{q} \mathfrak{S l}_{2}}$ fusion rules.

Open questions

- A spin chain covering all values of Y.
- CFT scaling limit at criticality and relation to Virasoro fusion.
- QFT interpretation ?
- Relation to loop models, 2D random geometry, ASEP...

Backstage: "Dual" BAE

$$
\frac{\bar{\Delta}_{l}\left(v_{m}\right) \bar{\Delta}_{r}\left(v_{m}\right)}{\bar{\Delta}_{l}\left(-v_{m}\right) \bar{\Delta}_{r}\left(-v_{m}\right)}\left(\frac{\sinh \left(v_{m}+\hbar / 2\right)}{\sinh \left(v_{m}-\hbar / 2\right)}\right)^{2 N}=\prod_{\substack{k=1 \\ k \neq m}}^{\bar{M}} \frac{\sinh \left(v_{m}-v_{k}+\hbar\right) \sinh \left(v_{m}+v_{k}\right.}{\sinh \left(v_{m}-v_{k}-\hbar\right) \sinh \left(v_{m}+v_{k}\right.}
$$

with $\bar{M}=N-M-1$ and

$$
\begin{aligned}
\bar{\Delta}_{l / r}(u) & =: 1-\mu_{I / r} \frac{\sinh (u-\hbar / 2) \sinh \left(u-\hbar\left(\alpha_{I / r}+1 / 2\right)\right)}{\sinh (\hbar) \sinh \left(\hbar \alpha_{I / r}\right)} \\
& =\frac{\sinh \left(u-\hbar \frac{\alpha_{l / r}+1}{2}-\zeta_{I / r}\right) \sinh \left(u-\hbar \frac{\alpha_{l / r}+1}{2}+\zeta_{I / r}\right)}{\sinh \left(\frac{\hbar \alpha_{l / r}}{2}-\zeta_{I / r}\right) \sinh \left(\frac{\hbar \alpha_{/ / r}}{2}+\zeta_{I / r}\right)} .
\end{aligned}
$$

They come from the isomorphism

$$
2 \mathrm{~B}_{\delta, y_{l / r}, Y_{M}, N} \cong 2 \mathrm{~B}_{\delta, \delta-y_{l / r}, \delta-y_{l}-y_{r}+Y_{\bar{M}, N}, \quad b_{l / r} \rightarrow 1-b_{l / r} ~}
$$

Backstage : Explicit expressions of $b_{/ / r}$

We have
$b_{l}=\frac{1}{\left[\alpha_{l}\right]_{\mathfrak{q}}}\left(\begin{array}{cc}\frac{\mathfrak{q}^{\alpha /}-\mathfrak{q}^{-1} K^{-1}}{\mathfrak{q} \mathfrak{q}^{-1}} & \mathrm{~F} \\ \mathfrak{q} K^{-1} \mathrm{E} & \frac{\mathfrak{q} K^{-1}-\mathfrak{q}^{-\alpha_{l}}}{\mathfrak{q}-\mathfrak{q}^{-1}}\end{array}\right), b_{r}=\frac{1}{\left[\alpha_{r}\right]_{\mathfrak{q}}}\left(\begin{array}{cc}\frac{\mathfrak{q} K-q^{-\alpha_{r}}}{\mathfrak{q}-\mathfrak{q}^{-1}} & \mathfrak{q} K F \\ E & \frac{\mathfrak{q}^{\alpha}-\mathfrak{q}^{-1} K}{\mathfrak{q}-\mathfrak{q}^{-1}}\end{array}\right)$
written as 2×2 matrices with elements in $\operatorname{End}\left(\mathcal{V}_{\alpha_{/ / r}}\right)$.
$b_{l / r}$ is the projector on the $\mathcal{V}_{\alpha_{/ / r}+1}$ factor of $\mathcal{V}_{\alpha_{l}} \otimes \mathbb{C}^{2}$ or $\mathbb{C}^{2} \otimes \mathcal{V}_{\alpha_{r}}$.

