Exceptional finite groups of Lie type and their primitive actions

Young Group Theorists Workshop

Eileen Pan

Previously on Young Group Theorists Workshop...

- Almost simple groups
- Base size of a primitive permutation group
- Groups of Lie type
- Intersections of subgroups
- ...

Subdegrees and intersections

Let G be a group acting transitively on a set Ω .

- Denote $\operatorname{Stab}_{G}(x)$ for the *point stabiliser* of $x \in \Omega$.
- A *suborbit* is any orbit of $Stab_G(x)$ for any $x \in \Omega$.
- The cardinalities (lengths) of suborbits are the *subdegrees*.

Subdegrees and intersections

Let G be a group acting transitively on a set Ω .

- Denote $\operatorname{Stab}_{G}(x)$ for the *point stabiliser* of $x \in \Omega$.
- A *suborbit* is any orbit of $Stab_G(x)$ for any $x \in \Omega$.
- The cardinalities (lengths) of suborbits are the *subdegrees*.

Example

Let H be a subgroup of a finite group G.

- Then G acts on the set of cosets (G:H) transitively.
- Such an action is primitive if and only if H is maximal in G.
- $Stab_G([1]) = H$ and $Stab_G([g]) = H^g$.
- $|\operatorname{Orb}_{H}([g])| = \frac{|H|}{|H \cap H^{g}|}.$

"Just fixed point subgroups of algebraic groups."

"Just fixed point subgroups of algebraic groups."

Example

Let $k = \overline{\mathbb{F}}_p$. Let $G = \operatorname{GL}_n(k)$ and consider the (standard Frobenius) map $\sigma \colon G \to G$ $(a_{ij}) \mapsto (a^q_{ij}), \text{ where } q = p^f.$

Then

$$G_{\sigma} = \{g \in G \mid \sigma(g) = g\} = \operatorname{GL}_n(q).$$

"Just fixed point subgroups of algebraic groups."

Example

Let $k = \overline{\mathbb{F}}_p$. Let $G = \operatorname{GL}_n(k)$ and consider the (standard Frobenius) map $\sigma \colon G \to G$ $(a_{ij}) \mapsto (a_{ij}^q)$, where $q = p^f$.

$$G_{\sigma} = \{g \in G \mid \sigma(g) = g\} = \operatorname{GL}_n(q).$$

General setup:

- Let $k = \overline{\mathbb{F}_p}$, for some prime p.
- Let G be a linear algebraic group over k.
- Let $\sigma\colon G\to G$ be a Steinberg endomorphism.
- G_{σ} is a finite subgroup of G.

A: Long story short...

- Let G be an exceptional finite group of Lie type.
- Let H be a maximal subgroup of G.
- Determine the subdegrees of primitive actions of G on (G:H).

A: Long story short...

- Let G be an exceptional finite group of Lie type.
- Let H be a maximal subgroup of G.
- Determine the subdegrees of primitive actions of G on (G:H).

Q: How?

A: Long story short...

- Let G be an exceptional finite group of Lie type.
- Let H be a maximal subgroup of G.
- Determine the subdegrees of primitive actions of G on (G:H).

Q: How?

A: By calculating the intersections $H \cap H^g$.

But first, there are some known results

- Law ther & Saxl, 1988: $B_2(q)$ on the cosets of $^2B_2(q),\,q=2^m.$
- Lawther & Saxl, 1988: $B_2(q^2)$ on the cosets of $B_2(q)$, $q = 2^m$.
- Law ther, 1989: $G_2(q)$ on the cosets of $^2G_2(q),\,q=3^m.$
- Law ther, 1989: $G_2(q^2)$ on the cosets of $G_2(q),\,q$ any prime power.
- Lawther, 1999: $F_4(q)$ on the cosets of $B_4(q)$, q any prime power.
- Bannai, Song & Yamada, 2008: $G_2(q)$ on the cosets of $A_2(q).2, q$ odd.

But first, there are some known results

- Lawther & Saxl, 1988: $B_2(q)$ on the cosets of ${}^2B_2(q)$, $q = 2^m$.
- Law ther & Saxl, 1988: $B_2(q^2)$ on the cosets of $B_2(q),\,q=2^m.$
- Lawther, 1989: $G_2(q)$ on the cosets of ${}^2G_2(q)$, $q = 3^m$.
- Law ther, 1989: $G_2(q^2)$ on the cosets of $G_2(q)$, q any prime power.
- Lawther, 1999: $F_4(q)$ on the cosets of $B_4(q)$, q any prime power.
- Bannai, Song & Yamada, 2008: $G_2(q)$ on the cosets of $A_2(q).2$, q odd.

Abstract The character tables of the commutative association schemes coming from the action of the Chevalley group $G_2(q)$ on the set Ω_{ϵ} of hyperplanes of type $O_{6}^{\epsilon}(q)$ in the seven dimensional orthogonal geometry over GF(q) related to the orthogonal group $O_7(q)$ are constructed by modifying the character tables of the association schemes obtained from the action of $O_7(q)$ on Ω_{ϵ} .

Keywords Multiplicity-free permutation characters

Example: subdegrees of $G_2(q)$ -action on $(G_2(q) : SL_3(q).2)$

Example: subdegrees of $G_2(q)$ -action on $(G_2(q) : SL_3(q).2)$

The algebraic group $\overline{G} = \langle T, X_r \mid r \in \Phi \rangle$ has a (subsystem) subgroup $\overline{H} = \langle T, X_{\pm\beta}, X_{\pm(3\alpha+2\beta)} \rangle$ of type A_2 .

Example: subdegrees of $G_2(q)$ -action on $(G_2(q) : SL_3(q).2)$

The algebraic group $\overline{G} = \langle T, X_r | r \in \Phi \rangle$ has a (subsystem) subgroup $\overline{H} = \langle T, X_{\pm\beta}, X_{\pm(3\alpha+2\beta)} \rangle$ of type A_2 .

- $G = \overline{G}_{\sigma} \cong G_2(q).$
- $\operatorname{SL}_3(q) \cong H_0 = \overline{H}_{\sigma} \leq G.$
- $H = N_G(H_0) \cong SL_3(q).2$ is maximal in G.

By the Borel-de Siebenthal algorithm

$$\begin{array}{c} & & \\ \beta & \alpha \end{array} \xrightarrow{\text{extended Dynkin}} -3\alpha - 2\beta & \beta & \alpha \end{array} \xrightarrow{\text{delete } \alpha} -3\alpha - 2\beta & \beta \end{array}$$

Recall that the subdegrees of the G-action on (G:H) are closely related to double cosets and intersections:

$$|\operatorname{Orb}_{\operatorname{H}}([\operatorname{g}])| = \frac{|\operatorname{H}|}{|\operatorname{H} \cap \operatorname{Hg}|} = \frac{|\operatorname{Hg}_{\operatorname{H}}|}{|\operatorname{H}|}.$$

Goal: To find a complete and irredundant set of representatives $\Gamma \subset G$ such that

$$G=\bigsqcup_{g\in\Gamma}HgH.$$

Then we calculate $H \cap H^g$ to find the subdegrees $\frac{|H|}{|H \cap H^g|}$.

Goal: To find a complete and irredundant set of representatives $\Gamma \subset G$ such that

$$G = \bigsqcup_{g \in \Gamma} HgH.$$

Then we calculate $H \cap H^g$ to find the subdegrees $\frac{|H|}{|H \cap H^g|}$.

The calculations here are somewhat complicated. - Lawther (1999)

Goal: To find a complete and irredundant set of representatives $\Gamma \subset G$ such that

$$G = \bigsqcup_{g \in \Gamma} HgH.$$

Then we calculate $H \cap H^g$ to find the subdegrees $\frac{|H|}{|H \cap H^g|}$.

The calculations here are somewhat complicated. - Lawther (1999)

Table 1: Subdegrees of $G_2(q)$ on $(G_2(q) : SL_3(q).2)$, q odd

Double coset representative	Number of suborbits	subdegree
1	1	1
$x_{lpha}(1)$	1	$2(q^3 - 1)$
$x_{lpha+eta}(1)x_{2lpha+eta}(1)$	1	$(q^2 - 1)(q^3 - 1)$
$x_{\alpha}(rac{1}{2}(p+1))n_{lpha}^{-1}x_{lpha}(1)$	1	$\frac{1}{2}q^2(q^3-1)$
$x_{\alpha}(\lambda)n_{\alpha}^{-1}x_{\alpha}(1), \lambda \in \mathbb{F}_{q} \setminus \{0, 1, \frac{1}{2}(p+1)\}$	$\frac{1}{2}(q-3)$	$q^2(q^3-1)$

Outlook

- Explicitly determine the isomorphism types of $H\cap H^g.$
- Determine the subdegrees of $G_2(q)$ acting on the cosets of other maximal subgroups.
- Consider the coset actions of other finite groups of exceptional Lie type.
- Computational implementations.

Thank you!